Report

Date 11-May-2016

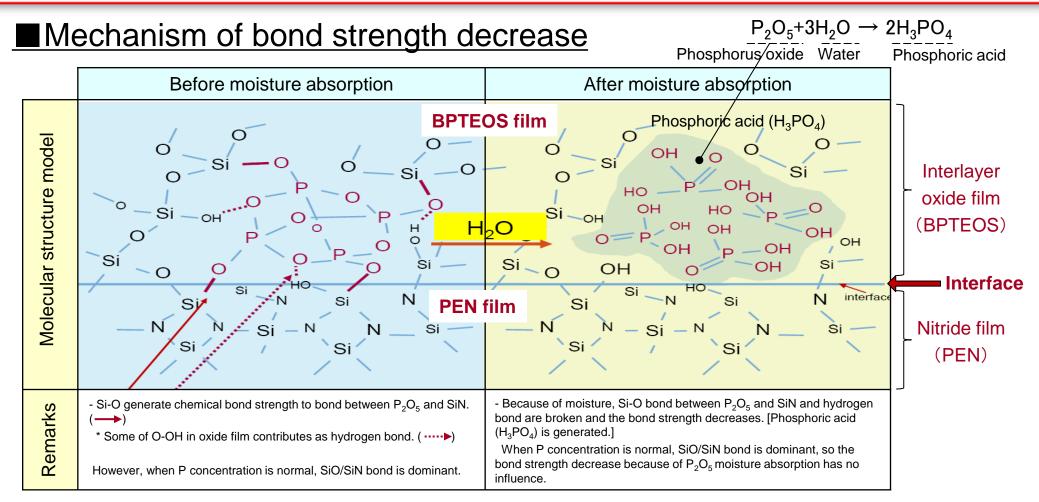
DENSO Driving Assist & Safety Eng. Div.3

Driving Assist & Safety Quality Assurance Div.

То	TOYOTA MOTOR MANUFACTURING KENTUCKY	
СС		
Title	Filed claim investigation result for Airbag sensor (DRAS II)	

We report the field claim investigation result for Airbag sensor.

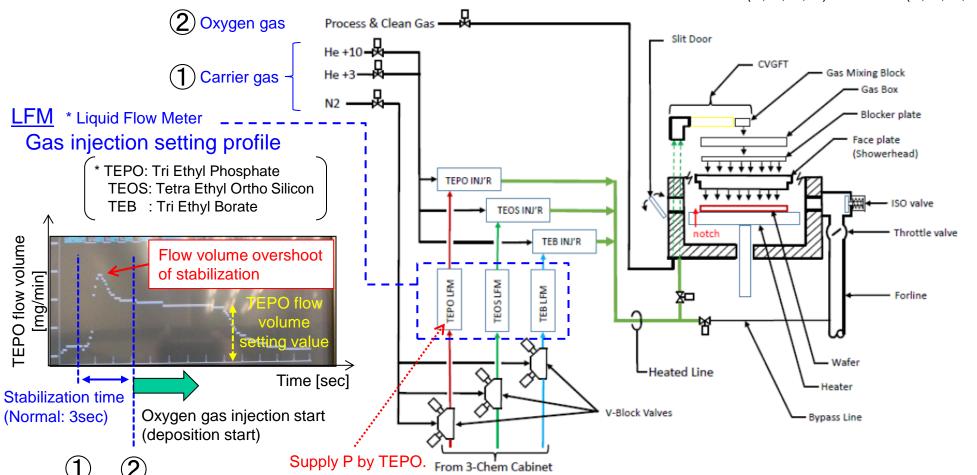
Part Name : SENSOR, AIR BAG, FR


Part Number: 89173-06120

■ Interlayer film delamination process

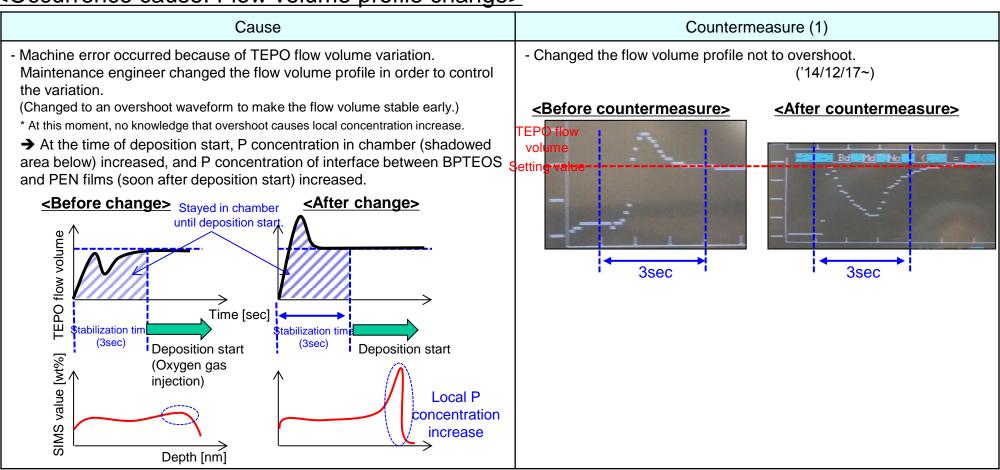
Process	Interlayer film condition	Description
Initial	Mold package Interlayer oxide film (BPTEOS) ≒7500Å Polysilicon Silicon substrate	Interlayer oxide film contains P(Phosphorus) and B(Boron). •••P and B protect the impurity ion in orde to acquire the transistor characteristics.
Absorp moisture ↓ Delamination occurs	Tensile stress * Occurred because of loading of G sensor chip, etc. BPTEOS and PEN Tensile stress	When P concentration between BPTEOS and PEN increased, the interfacial bond strength decreased, and interlayer film was delaminated. → Mechanism of bond strength decrease on the next page.
Via disconnection occurs	Via disconnection H ₂ O	Via was disconnected because of tensile stress. Delamination/disconnection occurred at chip edge with large internal stress.

- •in case of normal P concentration ⇒ P area is small ⇒ bond strength > Tensile stress ⇒ No delamination
- •in case of rich P concentration ⇒ P area is wide ⇒ bond strength < Tensile stress ⇒ Delamination


P concentration affects the interfacial bond strength.

5. Cause and countermeasure

■BPTEOS deposition device overview


* Machine below: FF09 (A, B, C, D) and FF10 (A, B, C, D)

Confirmed that the process change of TEPO flow setting was happened. → Next page

Cause and countermeasure

<Occurrence cause: Flow volume profile change>

Changed the flow volume profile to limit the peak of P concentration of interface between BPTEOS and PEN films.

Countermeasure (2)

Perform 100% monitoring of peak ratio for TEPO flow volume setting value in flow volume profile. (Sept. 1, 2015 ~)

Control item: TEPO flow volume setting value x Peak ratio

Control interval: 100% monitoring

Control value: 1.2 or less

* In the case of over 1.2 --- Machine stops. (Scrap the product.)

After adjusting the machine, check with SIMS result, and then flow.

<TEPO flow volume setting value x Peak ratio >

Actual measured value (Peak)

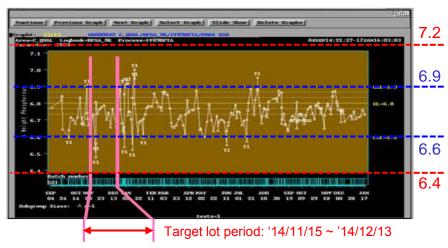
> **TEPO flow volume** setting value

* The above is the waveform of ratio ≒1.5. (Created intentionally.)

Perform 100% monitoring to see that flow volume profile is not overshoot.

<Flow-out cause: Phosphorus concentration control by X-ray fluorescence>

* SIMS --- Secondary Ion Mass Spectroscopy


- P concetration has been controlled by X-ray fluorescence. In this method, only average value of P concentration in deposition direction can be obtained, and local P concentration increase cannot be detected. Control item: P concentration peak * No knowledge that increase of local P concentration causes

delamination.

Process control width: 6.6 ~ 6.9wt% (Product spec: 6.4 ~ 7.2wt%)

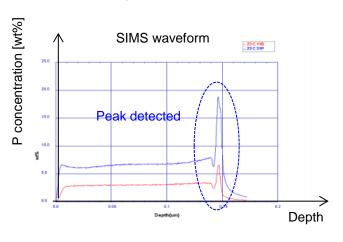
<X-ray fluorescence P concentration near target lot>

Cause

- → During the target lot period, P concentration (average value) increase was not detected.
 - * Correlation between P concentration (average) by X-ray fluorescence and P concentration (local) by SIMS is weak.

- Introduce SIMS to control local P concentration. ('14/12/17~) (Continue concentration control by X-ray fluorescence.)

Countermeasure


Control value: MAX 9.2%

Control interval: 2/week or after every maintenance

* Chamber A: 1/D (under special control)

Measuring position: Center of wafer (Set as a result of investigation of

distribution in wafer surface)

Introduced SIMS control for workmanship control of P concentration peak value.

