

AUSTRALIA, CANADA, UNITED STATES, MEXICO, NEW ZEALAND Countries:

ISIS Availability:

Major System: ACCESSORIES Current English

Language: Other NONE Languages: 290 Viewed:

Document IK1900236

Revision:

Created: 10/24/2014 Last 3/16/2015 Modified:

Kevin Kochanek Author:

Less Info

Hide Details			Coding Information				
Copy Link	Copy Relative Link	Bookmark	Add to Favorites	Print	Provide Feedback	Helpful	Not Helpful
ලං		View My Bookmarks	*		彈		

Title: Symptom 2: No-Idle HVAC Fault Codes

Applies To: ProStar® and LoneStar®

CHANGE LOG

Please refer to the change log text box below for recent changes to this article:

11/21/2014 - Initial Article Release 02/19/2015 - Revision 1 updated steps 03/06/2015 - Added Warranty and SRT Information

3/12/2015 - Amended DTC list

DESCRIPTION

This document will guide the user through the diagnostics of the No-Idle HVAC Fault Codes.

SYMPTOM(s)

Diagnostic Trouble Code(s) & Dashboard Indicator Light(s):

DTC/Light	SPN	FMI	Description	Possible Causes	Diagnostics
3 ҒМІ	SPN 520210	6	Blower Output Short Circuit	Blower relay failure or Relay enable signal from system controller shorted to Power.	Go to Step 2.
5 FMI	SPN 1548	3	Discharge Temp Sensor High	Discharge Sensor wire shorted to power, Discharge sensor mission, Open circuit in sensor wiring, or Discharge Sensor faulty.	Go to Step 8.
6 FMI	SPN 1548	4	Discharge Temp Sensor Low	Discharge sensor wire shorted to ground or Discharge sensor faulty	Go to Step 8.
9 FMI	SPN 168	3	Battery Voltage High	Charging circuit failure	Test charging system for excessive voltage output.
10 FMI	SPN 168	4	Voltage Low	Battery or charging circuit failure	Test batteries and charging system.
11 FMI	SPN 1547	0	Inlet Temp Sensor High		Go to Step 9.

				Inlet Temp sensor wire shorted to power, Inlet Temp sensor missing or open circuit in sensor wiring, or Inlet Temp sensor faulty	
12 FMI 1	SPN 1547	1	Inlet Temp Sensor Low	Inlet Temp sensor wire shorted to ground or Inlet Temp sensor faulty	Go to Step 9.
15 FMI 14	SPN 520808	14	No-Idle Compressor Relay Open / Short	Compressor and condenser relay failure or Relay enable signal from system controller shorted to power.	Go to Step 10.
17 FMI 14	SPN 520810	14	Condenser Fan Relay Short / Open	Compressor and condenser relay fault, Relay enable signal from system controller shorted to power.	Go to Step 10.
19 FMI 14	SPN 109	14		High refrigerant pressure in system, Pressure sensor unplugged, Open circuit in sensor wiring, or Pressure sensor faulty,	Go to Step 17.

Customer Observations or Concerns:

- Loose connections
- · Failed relay
- · Open relay enable circuit
- Relay enable circuit shorted to B+Relay enable circuit shorted to ground
- Failed wire harness
- · Failed system controller
- Failed temp sensor
- Failed pressure switch
- · Failed alternator / regulator
- · Failed or discharged batteries

SPECIAL TOOL(s) / SOFTWARE

Tool Description	Tool Number	Comments	Instructions
Relay Breakout Harness	ZTSE4674		

Tools Resource Center

SERVICE PARTS INFORMATION

Not Applicable

Kit Description	Quantity Required	Notes
Not Applicable		

DIAGNOSTIC STEP(s)

To prevent property damage, personal injury, and / or death, park vehicle on a hard, flat surface, turn engine off, set parking brake, and install wheel chocks to prevent vehicle from moving in either direction.

To prevent personal injury and / or death, always wear safe eye protection when performing vehicle maintenance.

CAUTION:

To prevent damage to components, do not attempt to connect battery voltage to evaporator blower motor, condenser fan motor, or A/C compressor. Electronic components within the motors are sensitive to arcing and reverse polarity.

NOTE:

Perform all of the following steps Key-OFF and Park Brake set unless otherwise directed.

NOTE:

When disconnecting harness connectors, check for pushed-back and damaged terminals.

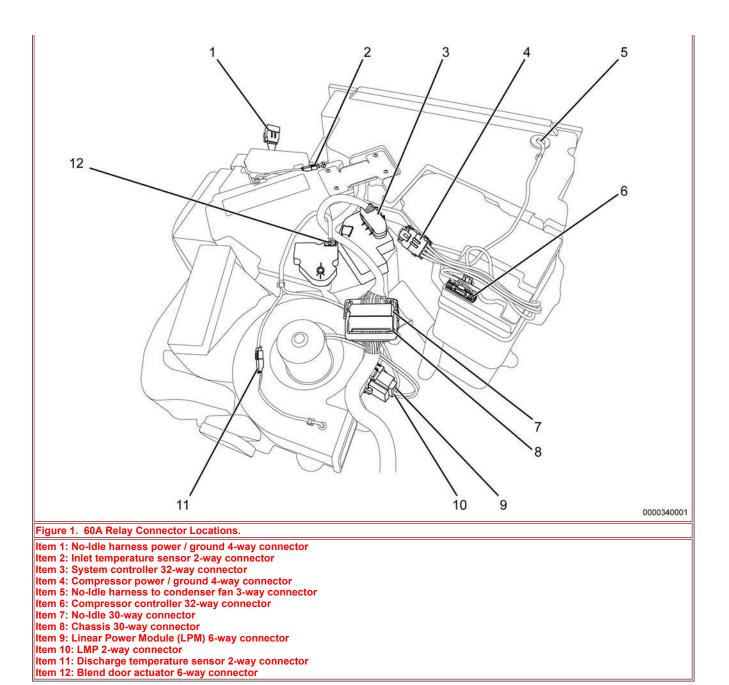
NOTE:

After any step where a problem is detected, repair as needed and retest for original concern.

NOTE:

If operator uses No-Idle A/C with ignition switch in ACCESSORY position, verify park brake input logic to system controller is correct.

NOTE:


Vehicles built with or updated to 150A compressor relays do not use fuse (F2); Circuit protection is provided by cube fuse located in battery box.

NOTE:

When 12V No-Idle system controller senses battery voltage drop below 11.8V for 10 seconds, system will shut down.

NOTE:

No-Idle A/C faults are transferred to Body Controller (BC) at Key-ON handshake between BC and No-Idle system controller. Inactive faults are not stored in the system controller. Only those faults that are active at handshake are transferred.

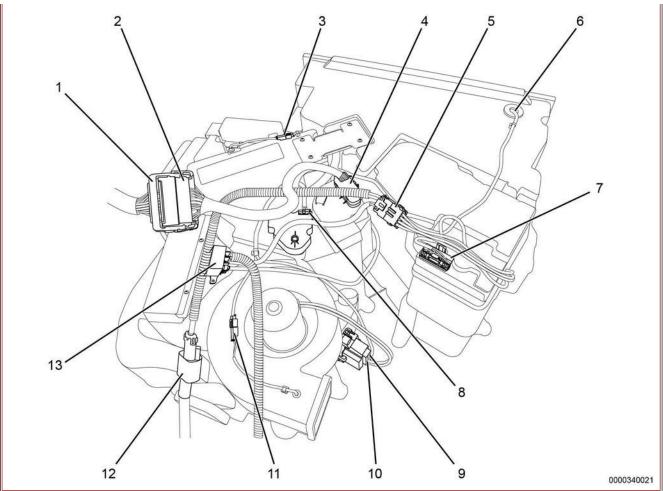
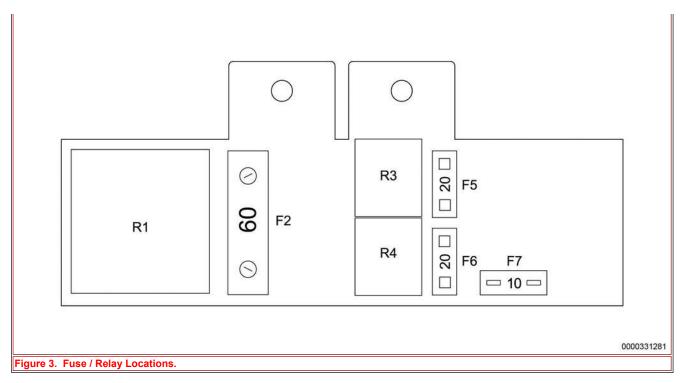
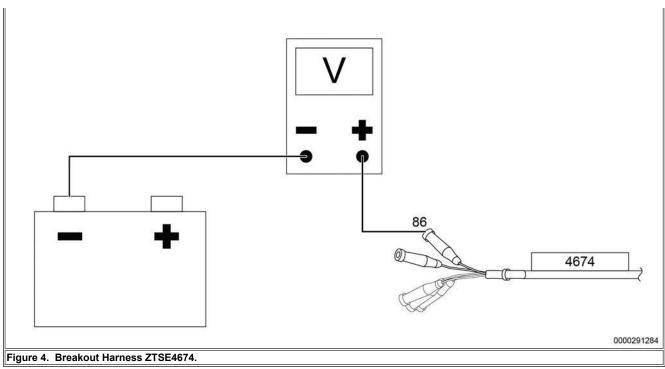
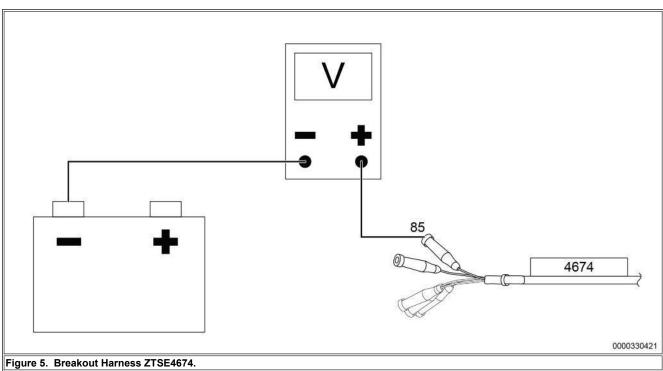
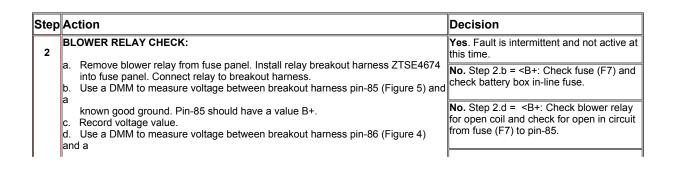
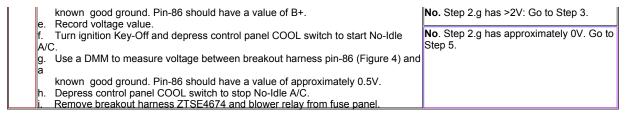



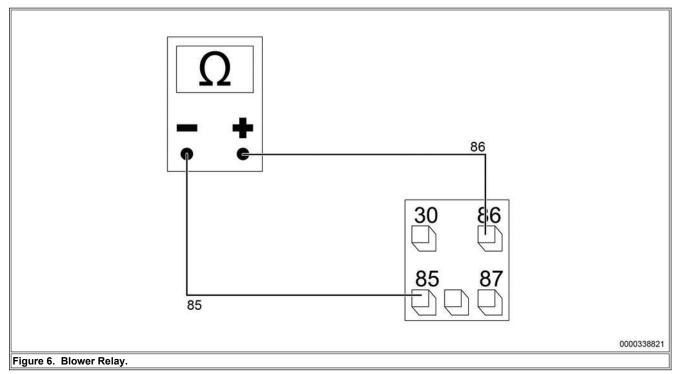
Figure 2. 150A Relay Connector Locations.

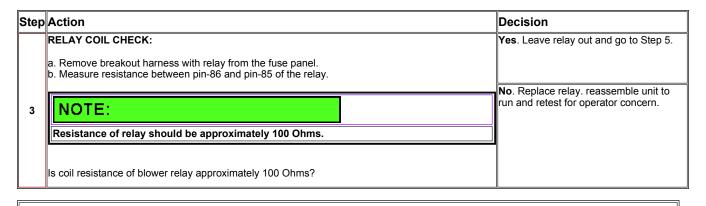

- Item 1: Chassis 30-way connector
- Item 2: No-Idle 30-way connector Item 3: Inlet temperature sensor 2-way connector
- Item 4: System controller 32-way connector
- Item 5: Compressor power / ground 4-way connector
- Item 6: No-Idle harness to condenser fan 3-way connector
- Item 7: Compressor controller 32-way connector
- Item 8: Blend door actuator 6-way connector
- Item 9: LPM 6-way connector
- Item 10: LPM 2-way connector
- Item 11: Discharge temperature sensor 2-way connector
- Item 12: Compressor controller 1-way ground connector Item 13: 150A relay

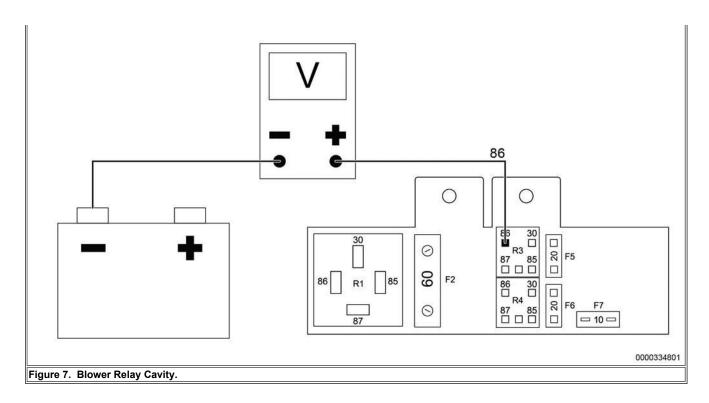


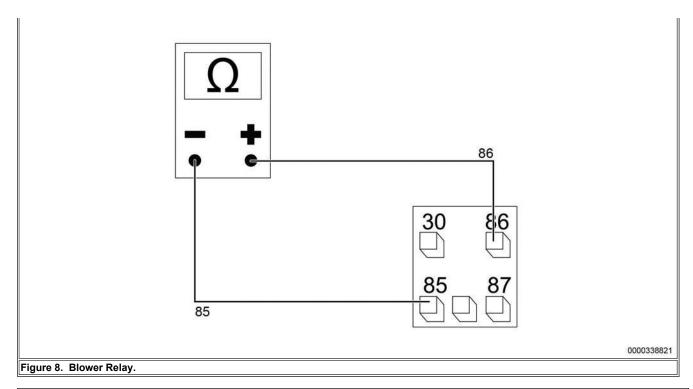

Step	Action	Decision
	Operational Check:	Yes. Go to Step 2.
	Verify all operational checks have been performed.	
1	Have all operational checks been performed?	No. Go to Operational Checks in IK1900235.
	Fault Code Check:	
	Locate the Fault Code(s) collected during the completeion of operational check (See IK1900235) in the table above and then refer to Diagnostics column for further instructions.	

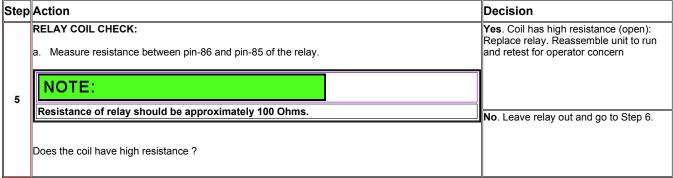

DTC 3, SPN 520210 FMI 6: BLOWER ENABLE CIRCUIT SHORTED


- Blower relay failure
- · Relay enable signal from system controller shorted to power









Step	Action	Decision
4	a. Unplug the No-Idle harness from system controller. b. Verify blower relay is removed. c. Use a DMM to measure voltage between fuse panel blower relay cavity-86 (Figure 7) and a known good ground. d. Reconnect harness to system controller. Is Step 4.c voltage at cavity-86 >2V?	Yes. Replace No-Idle harness. reassemble unit to run and retest for operator concern. No. Replace the system controller. Reassemble unit to run and retest for operator concern

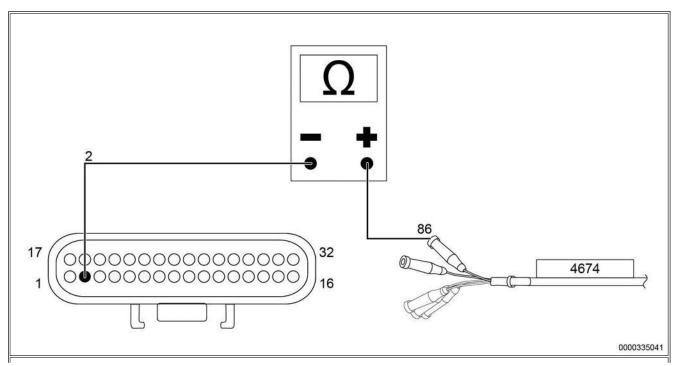
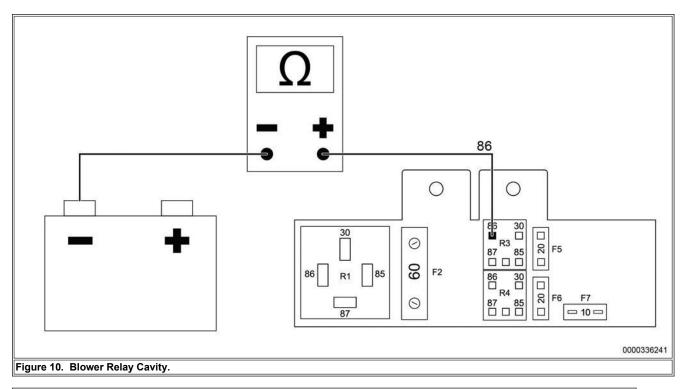
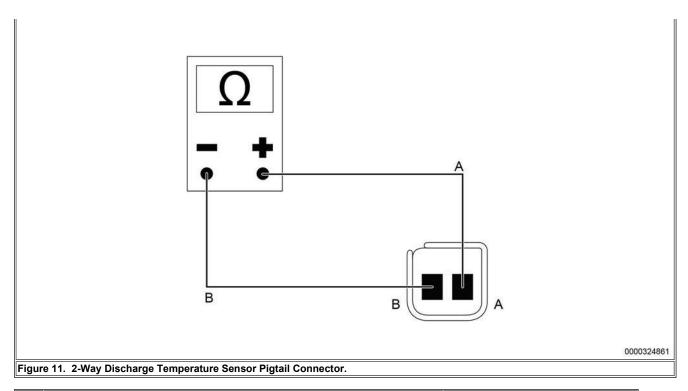



Figure 9. 32-Way System Controller Connector Face View and Breakout Harness ZTSE4674.


Step	Action	Decision
6	 b. Install relay breakout harness ZTSE4674 into fuse panel blower relay position. c. Use a DMM to measure resistance between breakout harness pin-86 and system controller pin-2 (Figure 9). 	Yes. Replace No-Idle harness. reassemble unit to run and retest for operator concern. No. Go to Step 7.

Step	Action	Decision
	ENABLE CIRCUIT SHORT to GND CHECK: a. Use a DMM to measure resistance between fuse panel blower relay cavity-86 and a known good ground (Figure 10).	Yes. Replace No-Idle harness. reassemble unit to run and retest for operator concern.
7	Is resistance less than 1000 Ohms?	No. Replace system controller. reassemble unit to run and retest for operator concern.

DTC 5, SPN 1548, FMI 3: DISCHARGE TEMP SENSOR HIGH

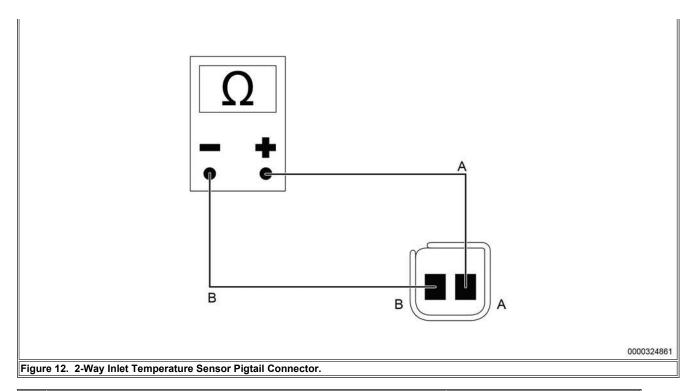
- Discharge temp sensor wire shorted to power
- Discharge temp sensor missing
- · Open circuit in discharge temp sensor wiring
- Discharge sensor faulty

Step	Action	Decision
	A. Unplug the discharge temperature sensor from the No-idle harness. B. Use a DMM to measure resistance between Pin-A and Pin-B of the sensor pigtail connector. C. Locate the current ambient temperature value on the Discharge Sensor/Inlet Sensor Chart. D. Compare the measured resistance to the min – max range on the chart.	Yes. Replace discharge temperature sensor. reassemble unit to run and retest for operator concern. No. Replace the No-Idle harness. Reassemble unit to run and retest for operator concern.
	Does measured resistance indicate an open or shorted sensor?	
	When compared to Sensor/ Temperature Chart, does sensor fall outside proper range?	

Discharge Sensor / Air Inlet Sensor Temperature Resistance Relationship Chart

Resistance values in Kohms.

Temp (°F)	Temp (°C)	MIN	ΚΩ	MAX
32.0	0	15.84		16.16
33.8	1	15.05		15.37
35.6	2	14.30		14.62
37.4	3	13.60		13.91
39.2	4	12.93		13.24
41.0	5	12.30		12.61
42.8	6	11.70		12.01

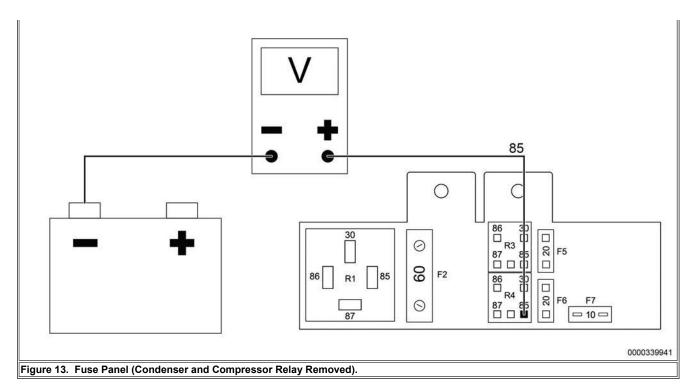

44.6	7	11.14	11.45
46.4	8	10.61	10.91
48.2	9	10.10	10.40
50.0	10	9.62	9.91
51.8	11	9.17	9.46
53.6	12	8.74	9.02
55.4	13	8.34	8.61
57.2	14	7.95	8.22
59.0	15	7.58	7.85
60.8	16	7.24	7.50
62.6	17	6.91	7.17
64.4	18	6.60	6.85
66.2	19	6.30	6.55
68.0	20	6.02	6.26
69.8	21	5.75	5.99
71.6	22	5.50	5.73
73.4	23	5.26	5.48
75.2	24	5.03	5.25
77.0	25	4.81	5.03
78.8	26	4.60	4.81
80.6	27	4.41	4.61
82.4	28	4.22	4.42
84.2	29	4.04	4.23
86.0	30	3.87	4.06
87.8	31	3.71	3.89
89.6	32	3.55	3.73

91.4	33	3.41	3.58
93.2	34	3.26	3.44
95.0	35	3.13	3.30
96.8	36	3.00	3.17
98.6	37	2.88	3.04
100.4	38	2.76	2.92
102.2	39	2.65	2.81
104.0	40	2.55	2.70
105.8	41	2.45	2.59
107.6	42	2.35	2.49
109.4	43	2.26	2.39
111.2	44	2.17	2.30
113.0	45	2.09	2.21
114.8	46	2.00	2.13
116.6	47	1.93	2.05
118.4	48	1.85	 1.97
120.2	49	1.78	1.91

DTC 11, SPN 11547, FMI 0: INLET TEMP SENSOR HIGH

DTC 11, SPN 11547, FMI 1: INLET TEMP SENSOR LOW

- Inlet temp sensor wire shorted to power Inlet temp sensor missing
- Open circuit in inlet temp sensor wiring
- Inlet temp sensor faulty

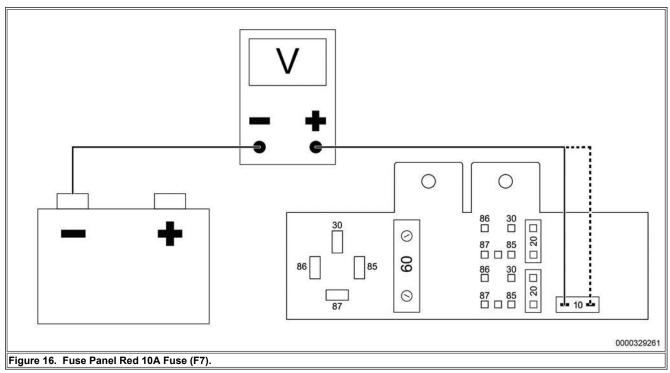



Step	Action	Decision
9	 A. Unplug the Inlet temperature sensor from the No-idle harness. B. Use a DMM to measure resistance between Pin-A and Pin-B of the sensor pigtail connector. C. Locate the current ambient temperature value on the Discharge Sensor/Inlet Sensor Chart. D. Compare the measured resistance to the min – max range on the chart. 	Yes. Replace inlet temperature sensor. reassemble unit to run and retest for operator concern. No. Replace the No-Idle harness. Reassemble unit to run and retest for operator concern.

DTC 15, SPN 520808, FMI 14: COMPRESSOR RELAY / CONDENSER RELAY FAULT

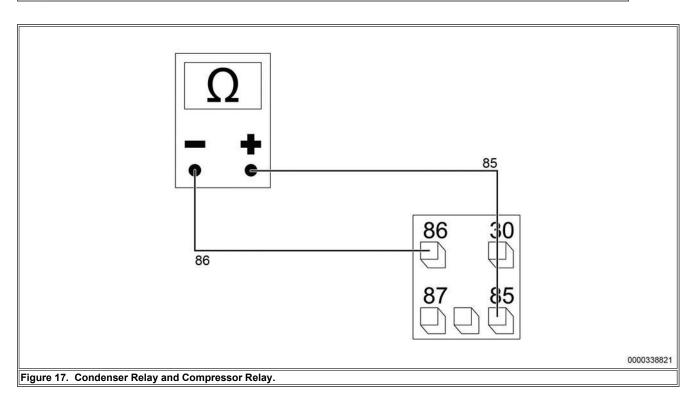
DTC17, SPN 520810, FMI 14: COMPRESSOR RELAY / CONDENSER RELAY FAULT

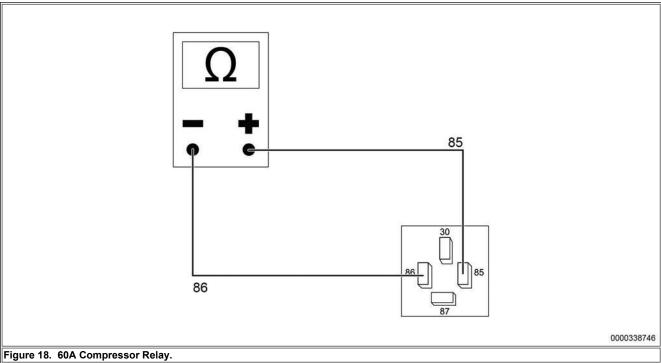
- Compressor and condenser relay failure
- Relay enable signal from system controller shorted to power

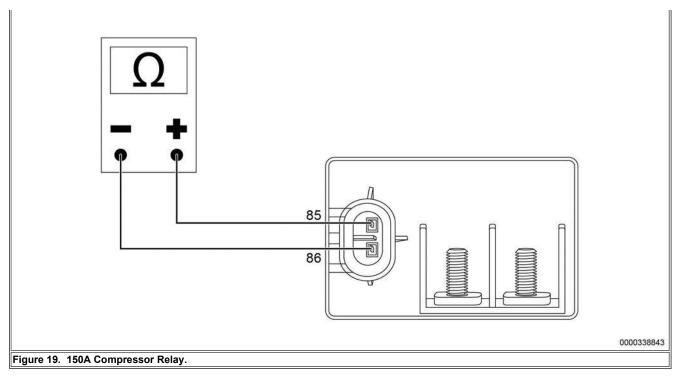


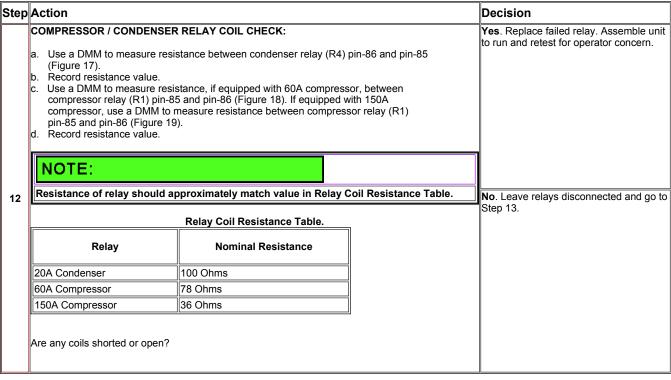
Step	Action	Decision
10	COMPRESSOR / CONDENSER RELAY VOLTAGE CHECK:	Yes . Leave relays disconnected and go to Step 12.
	A. Remove condenser relay (R4) from fuse panel. B. Remove 60A compressor relay from fuse panel or unplug 2-way harness connector from 150A compressor relay. C. Measure voltage between fuse panel condenser relay (R4) cavity-85 and a known good ground. D. Measure voltage between 2-way 150A compressor relay connector Pin-1 and a known good ground.	No . Cavity 85 has low voltage: Leave relay out and go to step 11.

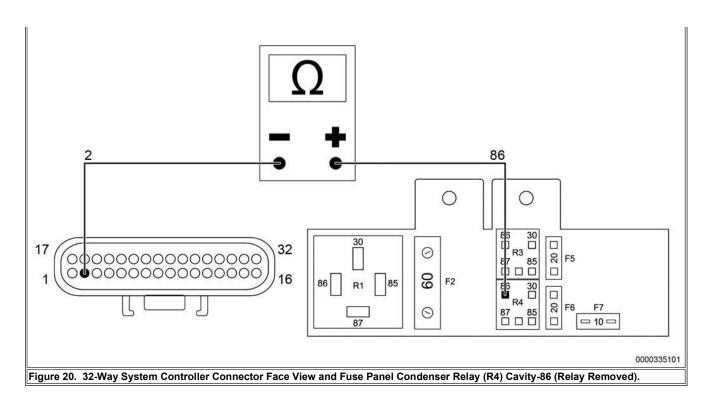
Are Steps 10.c and 10.d measurement both B+?

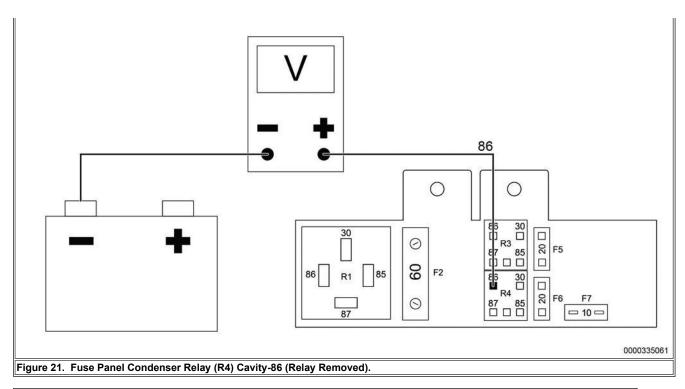


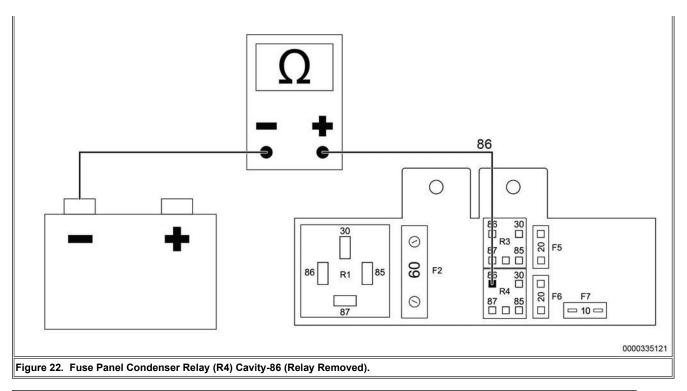

(F7) and a known good ground. If only one side has B+, replace fuse and retest.

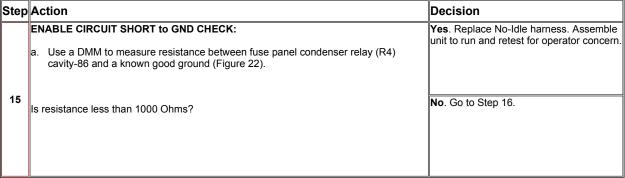

Are Steps 11.a through 11.c measurements equal to B+?


No. Steps 11.a and 11.b have low voltage: Repair open or high resistance in circuit from battery box in-line fuse holder to 30-way chassis / No-Idle connector (5205) pin-A9. Assemble unit to run and retest for operator concern.


No. Step 11.b has low voltage: Replace No-Idle harness. Assemble unit to run and retest for operator concern.







Step	Action	Decision
13	 ENABLE CIRCUIT RESISTANCE CHECK: a. Disconnect 32-way system controller connector. b. Use a DMM to measure resistance between fuse panel condenser relay (R4) cavity-86 and 32-way system controller connector pin-2 (Figure 20). c. Perform appropriate Step to match compressor relay: 1) 60A Compressor Relay: Use a DMM to measure resistance between fuse panel 60A compressor relay cavity-86 and 32-way system controller connector pin-2 (Figure 20). 2) 150A Compressor Relay: Use a DMM to measure resistance between 150A compressor relay 2-way harness connector pin-2 and 32-way system controller connector pin-2 (Figure 20). Is either resistance reading greater than 5 Ohms?	Yes. Replace No-Idle harness. Assemble unit to run and retest for operator concern. No. Go to Step 14.

Step	Action	Decision
14	a. Disconnect No-Idle harness from system controller. b. Use a DMM to measure voltage between condenser relay (R4) cavity-86 and a known good ground (Figure 21). Is voltage at condenser relay (R4) cavity-86 >2V?	Yes. Replace No-Idle harness. Assemble unit to run and retest for operator concern. No. Leave relay out, connectors disconnected, and go to Step 15.

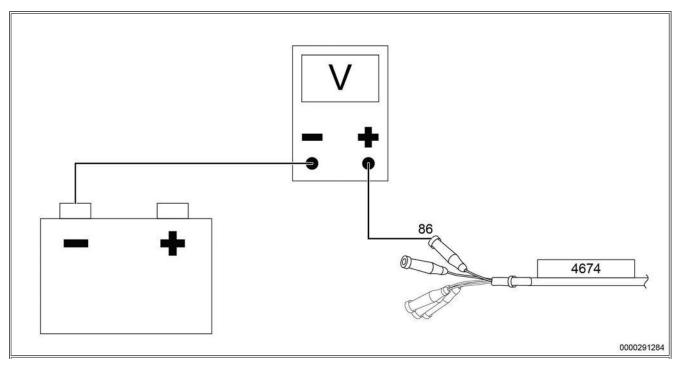
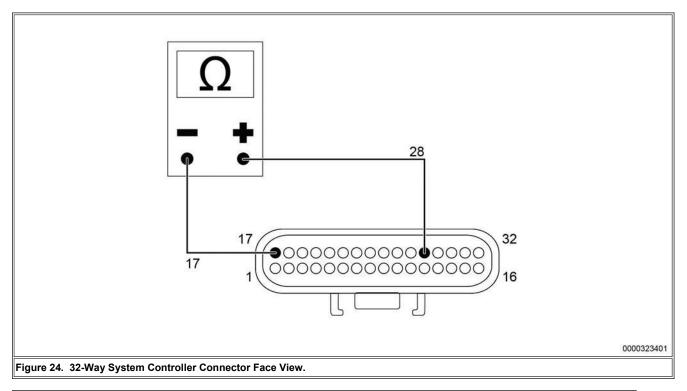
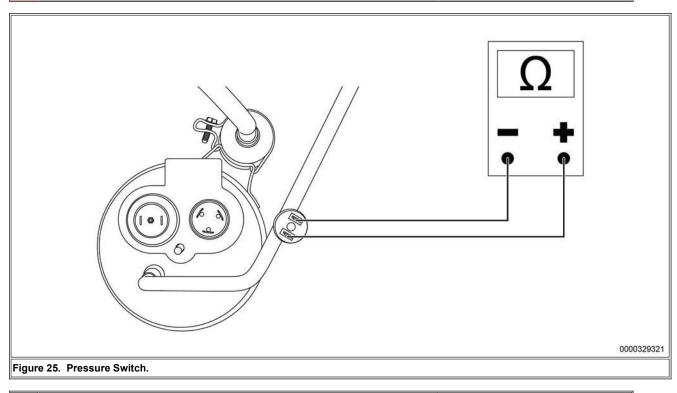



Figure 23. Fuse Panel Condenser Relay (R4) Cavity-86 (Relay Removed).

Step	Action	Decision
	a. Turn ignition Key-Off and depress control panel COOL switch to start No-Idle A/C. b. Depress digital display Speed-up switch multiple times to raise blower speed to highest setting. c. Depress digital display Temp-Down switch multiple times to lower temperature to lowest setting.	Yes. System is operating correctly. If DTC is still present at Key-On, replace system controller.
	NOTE:	No. Compressor does not start: Check discharge temp sensor, thermal limit
10		switch, and pressure switch for open circuits. If discharge temp sensor,
16	Compressor makes a low rumbling noise at start-up. Cool air at discharge ducts indicate compressor is on. If conditions make it difficult to verify compressor is running, use a DMM with inductive AMP clamp to monitor current draw on PWR leads of compressor controller high AMP 4-way connector. Compressor will draw 20 - 30 amps at start-up.	thermal limit switch, and pressure switch all have continuity, replace system controller.
	d. Monitor compressor for start-up (Figure 23).	
	Does compressor start?	

DTC 19, SPN 109, FMI 14: PRESSURE SWITCH CIRCUIT OPEN

- High refrigerant pressure in system
- Pressure sensor unplugged
- Open circuit in sensor wiring
- Pressure sensor faulty



Step	Action	Decision
17	PRESSURE SWITCH CONTINUITY CHECK:	Yes. Go to Step 18.
		No. Switch has continuity. Turn ignition Key-Off and then Key-On. Check for DTC 19, SPN 109, FMI 14: Pressure Switch

- c. Disconnect 32-way system controller connector from system controller.
- d. Use a DMM to measure resistance between 32-way system controller connector pin-17 and pin-28 (Figure 24).
- e. Connect 32-way system controller connector to system controller.

Is resistance value between pin-17 and pin-28 on 32-way system controller connector greater than 5 Ohms?

Circuit Open. If DTC is still present, replace system controller.

Step	Action	Decision
18	a. Turn No-Idle unit Off. b. Disconnect 32-way system controller connector from system controller. c. Remove compressor controller cover. d. Disconnect two wire terminals from pressure switch. e. Use a DMM to check continuity across pressure switch terminals (Figure 25). Is continuity present between pressure switch terminals?	Yes. Replace No-Idle harness. Assemble unit to run and retest for operator concern. No. Replace sealed refrigerant system. Assemble unit to run and retest for operator concern.

REPAIR STEP(s)

Not Applicable

REMOVAL PROCEDURE:

Not Applicable

INSTALLATION PROCEDURE:

Not Applicable

WARRANTY INFORMATION

Warranty Claim Coding:

Group:	19030 - Auxiliary No-Idle HVAC
Noun:	638 - Electric HVAC Module

- Link to the Coding Manual: Click Here

Standard Repair Time(s) - ProStar:

Step	Description	Chassis	Engine	SRT	Hours
1 - 7	Blower Output Short Circuit	ProStar	N/A	R20-1007A	0.2 Hr
1 and 8	Discharge Temperature Sensor High / Low	ProStar	N/A	R20-1007A-20	0.1 Hr
1	Battery Voltage High	ProStar	N/A	R20-1007A-21	0.1 Hr
1	Battery Voltage Low	ProStar	N/A	R20-1007A-22	0.1 hr
1 and 9	Inlet Temperature Sensor High / Low	ProStar	N/A	R20-1007A-23	0.1 hr
1, 10 - 12, 14 - 17	Condenser Fan Relay Short / Open	ProStar	N/A	R20-1007A-24	0.2 Hr
1, 18 - 19	Pressure Switch Circuit Open	ProStar	N/A	R20-1007A-25	0.2 Hr

Standard Repair Time(s) - LoneStar:

Step	Description	Chassis	Engine	SRT	Hours
1 - 7	Blower Output Short Circuit	LoneStar	N/A	S20-1007A	0.2 Hr
1 and 8	Discharge Temperature Sensor High / Low	LoneStar	N/A	S20-1007A-20	0.1 Hr
1	Battery Voltage High	LoneStar	N/A	S20-1007A-21	0.1 Hr
1	Battery Voltage Low	LoneStar	N/A	S20-1007A-22	0.1 hr
1 and 9	Inlet Temperature Sensor High / Low	LoneStar	N/A	S20-1007A-23	0.1 hr
1, 10 - 12, 14 - 17	Condenser Fan Relay Short / Open	LoneStar	N/A	S20-1007A-24	0.2 Hr
1, 18 - 19	Pressure Switch Circuit Open	LoneStar	N/A	S20-1007A-25	0.2 Hr

⁻ Link to the Standard Repair Time Manual: Click Here

Claim SRT Example:

Not Applicable

Claim Comment Suggestion:

Not Applicable

Special Requirement(s):

Not Applicable

OTHER RESOURCES

Circuit Diagrams By Unit Build Date				
MaxxPower No-Idle System Circuit Diagram (PDF)	Units Prior to November 11, 2013	Click Here		
MaxxPower No-Idle System Circuit Diagram (PDF)	Units from November 11, 2013 to June 23, 2014	Click Here		
MaxxPower No-Idle System Circuit Diagram (PDF)	Units from June 24, 2014 through Current	Click Here		

Master Service Information Site

Hide Details	Feedback Information	
	Viewed: 289	
	Helpful: 0	
	Not Helpful: 0	
No Feedback Found		

Copyright © 2015 Navistar, Inc.