

NHTSA Investigation EA13-003 Summary of Tests and Analysis

Contents

Overview of Fuel Tank System

Tests and Analysis

Conclusion

Overview W211 HDPE 80L Fuel Tank System

Tests and Analysis

Four types of tests and analysis were performed:

- □ Investigation of leak sources
- □ Analysis of potential for fuel to reach the ground
- □ Investigation of sealing performance of access cover
- □ No potential for ignition

Review of Service and Field Information

Service records were studied and x-ray CT scans used to identify improper installation of fuel system components during service that may lead to leakage

Pinched wires (CT)

Broken ring nut, probably resulting from over-torquing

Review of Service and Field Information (continued)

- Review indicated a number of different improper service techniques and ways these techniques can lead to leak conditions
 - Over-torquing ring nut
 - Insufficient tightening of ring nut
 - Failure to replace seal
 - Use of wrong ring nut
 - Damage to service cover port seals

Vehicle Study

- Detailed analysis of 14 vehicles with customer complaints of fuel leakage or fuel odor
- Tests were performed to quantify leak sizes and volumes
- Tests show leakage rates are extremely small and are mainly associated with odor complaints

Field Return Parts Study

- Tightness testing conducted on fuel filters returned from the field
- Designed to identify worst case leakage rates
- Results showed very small leak sizes in most parts; size limited so that most of fuel can be captured in depression on top of filter

Containment Well Capacity Analysis

Measurement of holding capacity of fuel system areas in which any leaking fuel could collect

Leakage and Evaporation Rate Measurements

- Leakage rates were established for typical and large leak sizes, based on field data
- Evaporation rates were determined for fuel in containment well while driving
- Evaporation significantly reduces accumulation of fuel on top of tank
- Leakage rate for nearly all fuel filter module leaks is less than evaporation rate for fuel
- Therefore no significant accumulation of fuel on top of tank

Driving Simulations – worst case filter modules

- □ Tanks filled with different amounts of fuel were tested
- □ 2 different driving cycles: city and mountain driving
- Tests show extreme conditions necessary for fuel to move out of containment well
- Additionally in real world driving situations evaporation significantly reduces accumulation

Fuel Path Investigation

- Theoretical flow of liquid from the top of the fuel tank investigated
- Findings: liquid moves from top, down side, to underbody cover
- □ No possible path to exhaust system

Underbody Cover Containment Analysis

- □ Containment capacity of underbody cover measured
- Significant amount of liquid will be contained in underbody cover
- Liquid in cover subject to further evaporation

Investigation of Sealing Performance of Access Cover

Tests performed to test tightness of access cover plates over fuel tank

- □ Tests included:
 - Water-jet sprayer test
 - Car wash station test
 - High-pressure steam cleaner test
 - Heavy rain simulation test in SHED chamber
 - Vapor intrusion test in SHED chamber

Investigation of Sealing Performance of Access Cover

Tests performed to test tightness of access cover plates over fuel tank

- □ Tests included:
 - Test of potential wicking effect of fuel along wiring harness
 - Cabin pressure differential test

Investigation of Sealing Performance of Access Cover

Tests performed to test tightness of access cover plates over fuel tank

- □ Test results:
 - Leak proof sealing performance of cover plates confirmed, even under worst-case conditions
 - No wicking of fuel up wiring harness into passenger compartment
 - > No pressure differential
- □ Conclusion:
 - No possibility for fuel or fuel vapors to enter passenger compartment through access cover plates

No Potential for Ignition

Heat shields separating exhaust system from fuel tank analyzed

- Maximum temperatures on top of shield and below heat shield measured
- Hottest temperatures fuel from on top of tank can reach are well below ignition temperatures of liquid fuel

No Potential for Ignition

Other potential ignition sources analyzed

- Mechanical sparks
- □ Electrical sparks
- Electrostatic discharge

Conclusion: Analysis shows no sources of potential ignition

Field data also shows no fire cases

Conclusion

No Safety issue caused by potential leaks because:

- Small quantity of leak, primarily fuel odor, generally consistent with evaporation rate
- Leaks are contained and evaporation rates are high
- Effective warnings provided by OBD system
- No fuel leaks into passenger compartment, unless seals or access covers are improperly reinstalled during service
- > No risk of fire
- Complaints generally associated with overfilling or refueling process