CP4 rating catalog for visual findings

Roller surface

- Functions
 - Support axial forces
 - Axial guidance of the roller or lateral limitation
- Wear caused by
 - Mixed friction
 - Foreign bodies
- Types of wear
 - Smoothing
 - Abrasion
 - Adhesion

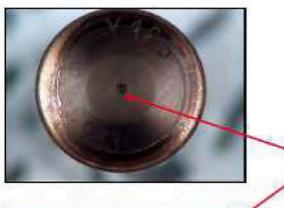
CP4 rating catalog for visual findings

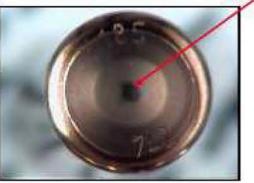
Roller surface – Status Green

Rating Images Description

1

As new




CP4 rating catalog for visual findings

Roller surface – Status Green

Rating Images Description

2

Used, smoothing of C coating on roller center identifiable

CP4 rating catalog for visual findings

Roller surface – Status Green

Rating

Images

Description

3

Clear, broad smoothing on center of roller




Roller surface - Status Yellow

Rating Images Description

4

C coating starting to come away from contact area

CP4 rating catalog for visual findings

Roller surface - Status Yellow

Rating

Images

Description

5

C coating up to Ø 3mm worn away, smoothing pattern

CP4 rating catalog for visual findings

Roller surface - Status Yellow

Rating

Images

Description

6

C coating more than Ø 3mm worn away, smoothing pattern

CP4 rating catalog for visual findings

Roller surface - Status Red

Rating Images Description

7

C coating worn away + slight wear from abrasive material (or slight seizing) up to Ø 3mm

CP4 rating catalog for visual findings

Roller surface - Status Red

Rating Images Description

8

C layer entrained to large extent + abrasive Material wear (or seizing) more than Ø 3mm

CP4 rating catalog for visual findings

Roller surface - Status Red

Rating

Images

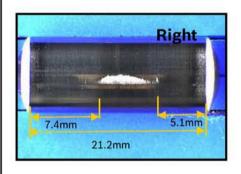
Description

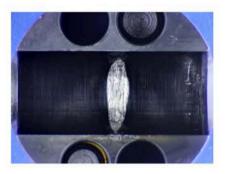
9

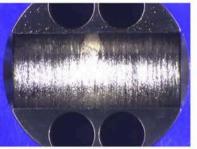
C layer almost completely entrained + abrasive Material wear (seizing) on whole face

CP4 rating catalog for visual findings

Roller surface - Status Red

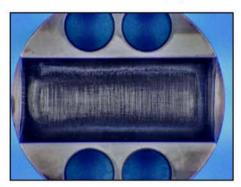

Rating Images Description


10 No occurrence Component breakage


Damage sequence creation, brake plates, roller

Damage sequence: Preliminary damage to brake plate results in subsequent damage Abrasion wear to powertrain





Cause: Temperatures >140°C in gap between roller and roller support result in deposit formation in roller support

Summer trial

Damage sequence creation, brake plates, roller

Cause variables that prevent warm-up of the roller and are therefore potential causes of preliminary damage to the brake plate

Engine start

- Speed increase 400rpm/sec / 2000rpm/sec -
- Speed fluctuations
 Inertia of roller ↑ → Slippage roller/camshaft

Fuel viscosity

Temperature $\uparrow \Box \mu_{RS} \uparrow \uparrow$ v \downarrow (kerosene, gasoline) $\mu_{RS} \uparrow \uparrow$

Preliminary damage middle brake plate roller

Fuel + temperature → Deposit formation

Biodiesel - aged additives (tune up) → Lubricant shortage → Hydrodynamic build-up ↓

Insufficient lubrication of contact bearing

Prevention of lubricant intake to contact bearing

→ Hydrodynamic build-up ↓

Dry run/air in powertrain

Foam in fuel

No lubricants in contact bearing → Hydrodynamic build-up ↓↓

Powertrain empties at standstill

No lubricants in contact bearing

→ Hydrodynamic build-up ↓↓

Brown discoloration roller/camshaft

Abrasion of oxides $\rightarrow \mu_{RS} \uparrow \uparrow$ Smoothing camshaft $\rightarrow \mu_{RS} \uparrow \uparrow$ \rightarrow Slippage roller/camshaft

Damage sequence creation, brake plates, roller

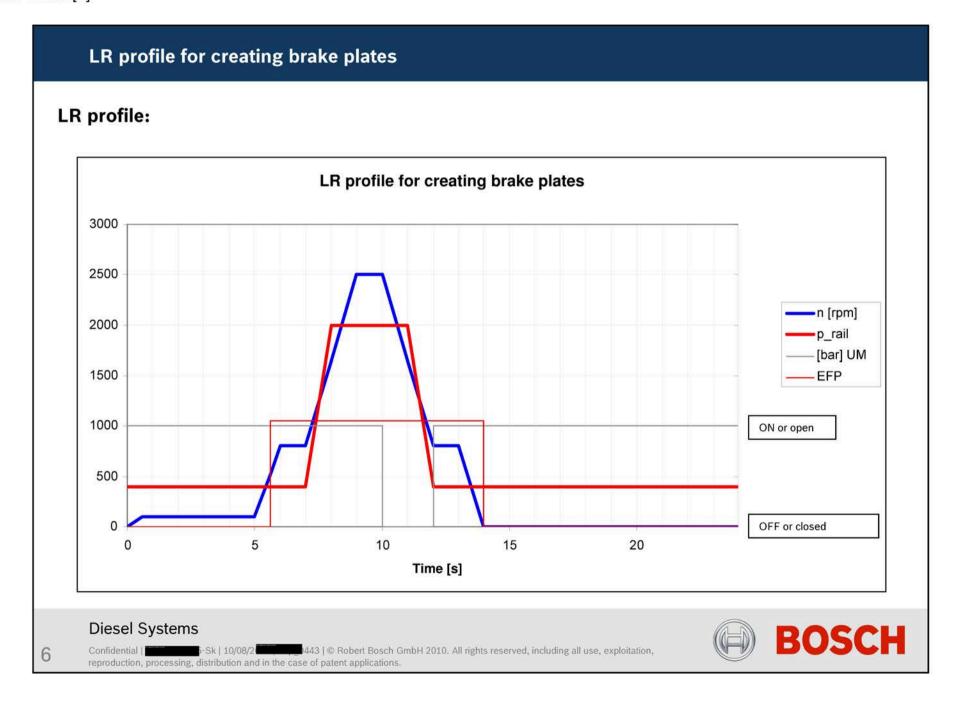
Cause variable	Mode of action	Finding	Possible measure
	'- Speed increase 400rpm/sec /		1
Engine start	2000rpm/sec	Start attempts 400rpm/s and 1200rpm/s OK	Repeat attempted needed
	- speed fluctuations Inertia of roller \uparrow \rightarrow	No backing in start for W19 application	
Fuel viscosity	Temperature $\uparrow \rightarrow \mu RS \uparrow \uparrow$	Analytics/simulation of contact bearing	Roughness of roller support Rp1, C3.1+
	v↓ (kerosene, gasoline) →µRS ↑↑	Friction coefficient check	Powertrain cooling RP2,
	The first of the f	Test bench start attempts	return from connector bore
Fuel+temperature	Biodiesel - aged	Field returns	Powertrain cooling RP2,
-> Deposit formation	Additives (tune up)	Engine trials	return from connector bore
•	$ ightarrow$ Lubricant shortage $ ightarrow$ Hydrodynamic build-up \downarrow	Evacuation attempt biofuel, tuneup	
Brown discoloration roller/camshaft	Abrasion of oxides $\rightarrow \mu RS \uparrow \uparrow$	Failed pumps/field pumps	Roughness of roller Rp1, C3.1+
	Smoothingcamshaft $\rightarrow \mu$ camshaft \downarrow	Friction coefficient examinations	Powertrain cooling RP2,
	→ Slippage roller/camshaft/camshaft	Oxide analysis: Hydrogen, oxygen, fluorine	return from connector bore
			Water separator, avoid air/foam
Dry warm-up/air in powertrain	Foam in fuel	Foam in fuel when tank fill level <16l and	Low-pressure circuit design
		GDK, GRV or China fuel	Tank content >16I
	No lubricants in contact bearing	Warm-up trial, friction coefficient check	
	→ Hydrodynamic build-up ↓↓	Vehicle trial	
	Powertrain empties at	Pump empties at standstill	Leakage prevention valve in tank module
	standstill	-Possible air leak: LP circuit, WDR	
	No lubricants in contact bearing	-Air in low pressure system, small circuit	
	→ Hydrodynamic build-up ↓↓		
Insufficient lubrication of contact bearing	Prevention of lubricant intake to contact bearing	Measures after simulation for hydrodynamics	Improvement to inlet geometry roller support
600	→Hydrodynamic build-up↓	not disadvantages, possible advantage only	Lubrication bore/grooves in roller support
		provable in functional trials	Reduction of wrap angle roller
			Increase roller diameter

Robustness documentation, start behavior CP4

Test bench trials CP4.2 2x4.85 mm

80 starts, speed increased to 800 rpm, p_All 3.5 bar_rel, inlet delayed,

in TCD	Outside TCD	Ra	ting: Discoloration/plates	
Arctic, 80 °C, 400 rpm/s	Kerosene, 80°C 400 rpm/s	Kerosene, 80°C 1200 rpm/s	Kerosene+air, 80°C 400 rpm/s	Dry run, 30°C 400 rpm/s, 20 starts
Rating: 1 / 1	Rating: 5 / 1	Rating: 5 / 7	Rating: 3 / 7	Rating: 3 / 4
	China Diesel, 22° 400rpm,<5min,2St.	Dry warm-up EN590 0-100rpm, 0-300 bar, 4 starts		
	Rating: 5 / 4	Rating: 1 / 9		



Robustness documentation, start behavior CP4

Vehicle trials, Q7, CP4.2 2x4.85 mm, start trials + idle

in TCD	Outside TCD Rating: Discoloration/plates							
EN590 howling trial	Gasoline 30%, first start (Audi)	Kerosene, first start (Audi)	Kerosene, 10°C, one-time trial	Gasoline 70%, 10°C one-time trial				
Rating: 1 / 1	Rating: 1 / 4	Rating: 1 / 4	Rating: 3 / 4	Rating: 3 / 6				
	China Diesel	Kerosene, 80°C blown out	Operating conditions: see:	- Aged biodiesel - air in powertrain -Vehicle run hot- on roll (80°C) before switch-off - Stand time 20 days at ap-				
	Trial planned		Maria di Salaharia di Maria di Salaharia di	prox. 20°C				
	Rating:	Rating: 3 / 5	Rating - / 10					

LR profile for creating brake plates

Trial status:

Fuel	T_AII [°C]	Starts	Remark	RL_L	RL_R	RS_L	RS_R	CmSh LP	CmSh UP
B20	50% @120°C, 50% @140°C	54,000	Elements below 45°	Discoloration R7 wear R6	Discoloration: R7 wear R7	Lining R/ wear R3	Lining R7 wear R3	R4	R3
EN590	80°C	9,900	With air in inlet. Elements below 45°	Discoloration: R1 wear: R4	Discoloration: R1 wear: R4	Lining R3 wear R3	Lining R3 wear R3	R3	R4
B20	140°C	18,000	Fuel foams with A4 tank, idle/venting at standstill, mounting position (right element vertical)	Pla Disco Wear:	in, dead	dline: op	pen g		
EN590 with 50% gasoline	140°C	18,000	Fuel foams with A4 tank, idle/venting at standstill, mounting position (right element vertical)	Pla Discooration. Wear:	in, dead	dline: op	pen wear		

「WW-R4型2.01: Information about the initial commissioning

VW-R4 2.01 EU5 – CRS3.2 –

Information about the initial commissioning of CRS with CP4.1 and pre-feed inline electrical fuel pump in connection with cold test.

27/06/2006

Note:

This slide replaces slides 14121d_Zu and 14150d_Zu; 14911d_Zu [Changes marked in "red"]

₩₩-H4 2.01: Information about the initial commissioning

Note the following during assembly

- → Cleanliness requirements, in particular, of feed lines into the diesel fuel filter.
- → Assembly and service information.
- → Assembly instructions (e.g. tightening torques), also see the relevant Component TKUs and offer drawings.

Initial filling of the injection system

- → All TKU values must be enforced!
- → recommended filling fluid: Diesel fuel compliant with DIN EN590 but HFRR ≤ 400µm

「VW-H4『2.01: Information about the initial commissioning

Test for detecting "major leaks" in the fuel system

A pneumatic leak test can be carried out before the initial commissioning in the cold test to detect any major leaks.

Background: For reasons of health, safety and cleanliness, the fuel system needs to be checked for serious assembly defects (e.g. defective bolt connections) prior to the engine being filled with diesel fuel in the cold test bench.

Pneumatic leak test of injection system:

In the CP4 feed with an unpressurized return line and <u>stationary</u> high-pressure pump with <u>5bar_rel</u> for t_{max}.≤20secs.

the fuel system can undergo a pneumatic check.

The cleanliness requirements with respect to air must be respected here.

VW-H4_2.01: Information about the initial commissioning

Recommended before ventilation, initial commissioning/cold test:

 Carry out an electrical test (e.g. CRI3.2: contacting, capacity measurement at low voltages, etc. {Note cable lengths and resistances of contact points})

Ventilation of CR systems for

- low-pressure circuits via CP4 return line,
- the high-pressure part (CP4, rail) via the suction/HP valve through the DRVu in the overall return line.

For cold test commissioning:

→ Control not via engine control unit → engine test bench control needed (Control of DRVu, ZME; CRI3.2 should not inject)

VW-R4 2.01: Information about the initial commissioning

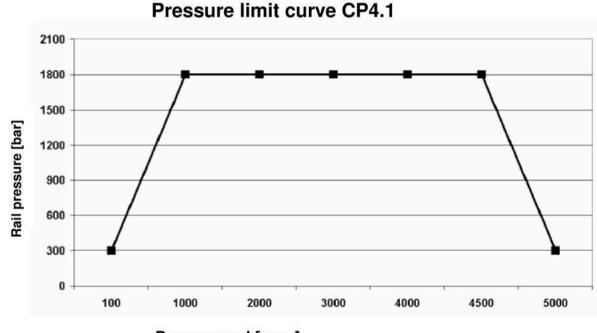
Ventilation of high-pressure pump CP4 (without reporting point) with pre-feed electric fuel pump

The following framework conditions must be satisfied during CP4 ventilation:

- Drying running the high-pressure pump is not permissible!
- → Also ensure min. filling/pre-pressure ≥ 4.5bar_abs through prefeed electric fuel pump:
 - Feed pressure: 4.5 ≤ p_feed [bar_abs] ≤ 7*
 *(not a critical limit, but a larger value does not make sense)
 - → Volume flow > 80 l/h + HP quantity requirement (Upper limit only restricted by max. feed pressure)
- → max. return line pressure ≤ 1.8bar_abs^v (continuous operation >1.8bar_abs can result in damage to the shaft seal ring).

「VW-H4_2.01: Information about the initial commissioning

- At 0 bar rail pressure, the max. drag speed n_{cP}=300...500 rpm. (RB recommendation n_{cP}=500 rpm.)
 - →An important prerequisite for the ventilation of the CP4 is that the rail pressure approaches zero.
 - →If there is still a static pressure in the rail, one reason might be that even the compression ratio of the elements are not sufficient to pump the air.
 - →In this case, the only venting path is via the HP piston guide into the interior which can take a very long time.
 - →If the rail pressure is zero, the result is a requisite pressure difference of 3.1 ≤ Δp [bar_rel] ≤ 5.1 via the suction and HP valve.
 - →Since the **overflow valve** is set to **approx. 3.3 bar_rel**, ventilation with an electric fuel pump without a spinning CP4 is only possible when the tolerances for the SV/HP valves are minimal.


VW-H4 2.01: Information about the initial commissioning

Pump only allowed to be operated within the **limit pressure** curve CP4 (Tab.1, Diag.1).

Table 1:

Pump speed [rpm]	100	1000	2000	3000	4000	4500	5000	
Engine speed [rpm]	100	1000	2000	3000	4000	4500	5000	
Rail pressure [bar]	300	1800	1800	1800	1800	1800	300	

Diagram 1:

Pump speed [rpm.]

VW-H4 2.01: Information about the initial commissioning

Step 1) LP/HP ventilation:

Continue to fill the high-pressure pump while in a stationary position until there are no more bubbles in the CP return line/overall return line. (transparent feed and return lines recommended). Instructions: Open metering unit non-energized; open DRVu non-energized; more efficient ventilation though overall return line bottom/top without counter-pressure. Pre-feed pressure > 4.5bar abs.

Step 2) Safe ventilation of HP part:

Depending on the setting tolerance of the suction/HP valve, it may already be completed in Step1 through electric feed pump pre-pressure. Ventilation of suction/HP valve by rotating high-pressure pump with open (no-current) DRVu until no bubbles are present in DRVu return.

System ventilation is complete; the system is ready for use.

□VW-H4_2.01: Information about the initial commissioning

Venting steps in detail:

Step 1) Venting time without rotation speed: 10(...20*)s (the low-pressure area is secure, the high-pressure area is only vented to a limited extent depending upon the tolerance position of the suction/HP valves.)

and

- Step 2) Venting time with rotation speed (300 ≤ ndrag [rpm] ≤ 500*)

 After pre-venting of low-pressure area: = 5 to 10s
- → The following must hold for Steps 1) + 2): p_Rail=0 bar
- *RB recommendation

^! VW-H4 2.01: Information about the initial commissioning

Ventilation

cold test commissioning in the engine plant

Step 1) Pre-venting of CP4.1 low-pressure area

 Q_{Feed} = 135 – 220 l/h (electric fuel pump or test bench supply)

alternative

p_{Feed} ≥ 4.5 bar_abs (≤ 7 bar_abs); RB recommendation: 5.0 bar_abs

additional increase preed increases QReturn by 400 l/(h*bar)

p_{Return} ≤ 1.8(...2.0)u bar_abs (static)

 $t_{Ventilation}$ \geq 10 secs. (pure CP venting time)

 $n_{Pump} = 0 \text{ min-1} (Pump stationary [!])$

p_{Rail} = 0 bar rel (with respect to p_{Return}), DRVu open, i.e. no flow through it

[!]

'VW-R4"2.01: Information about the initial commissioning

Step 2) Final ventilation CP4.1 HP area

Q _{Feed} alternative	= 135 – 220 l/h (electric fuel pump or test bench supply)
P _{Feed}	≥ 4.5 bar_abs (≤ 7 bar_abs)

p_{Return} ≤ 1.8(...2.0)u bar_abs (average pressure)

 $t_{Ventilation}$ = 5 to 10 secs.

 $n_{Pump} = 500 \text{ rpm}$

p_{Rail} = 0 bar_rel (with respect to p_{Return}), DRVu open, i.e. no flow through it

[!]

Times must be determined via trials on the engine directly at the final function test (EFT).

→ System ventilation is complete; the system is ready for use.

「VW-H4_2.01: Information about the initial commissioning

Tests for cold test commissioning:

Step 3) Measurement of rail pressure fluctuation, i.e. test whether ventilation was performed correctly or measure the air escaping during ventilation.

Step 4) Test (e.g. check high-pressure seal-tightness) with, e.g. a 1600 bar rail pressure and a pump speed of 1500 rpm. ($i=1 \rightarrow n_{cp} = n_{engine}$). Proposal: Duration 30 sec.

WW-R4_2.01: Information about the initial commissioning

<u>Proposal:</u> Check HP seal-tightness in pure DRV operation (due to ventilation; via DRVu is better)

Metering unit test: Function test by brief closing of metering unit → Monitoring of pressure troughs (continuous flow 1.7±0.1A; non-cyclical)

The fuel must be left in the system at the conclusion of the cold test. Tightly seal the feed and return connections of the injection system with plugs for the engine transport, as HP and LP system shorted when DRVu de-energized. This is intended to prevent the system from running out, especially the rail running empty.

Note: Filling of leak oil rail in cold test not specified; not until first start or hot test. Filling by means of control volume of injectors during injection.

VW-R4 2.01: Information about the initial commissioning

Venting steps in detail:

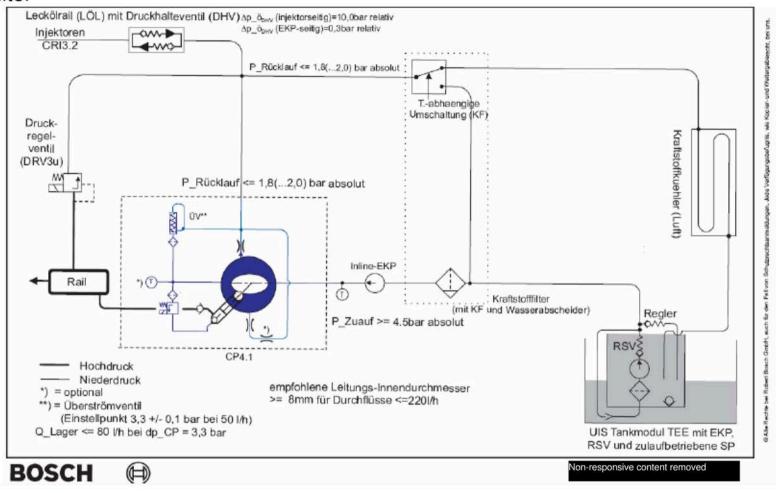
No.	Electric fuel pump [bar_ab s]	Electric fuel pump [bar_rel]	CP4 Return flow counter pressure [bar_abs]	CP4 Engine speed [rpm]	Rail pressure [bar]	DRVu	Metering unit	Notes	min. Duration [sec.]	max. Durati on [sec.]	Q [I/h] (Feed test bench)
1	min. 4.5 RB rec. 5.0	min. 3.5 RB rec. 4.0	1.0 - 1.2 max.1.8 U	0	0	opened I=0A	opened I=0A (Max. permissible current 1.7A±0.1 A non-cyclical. max.60sec.)	Ventilation in stationary position: CP-LP ventilation with electric fuel pump pre-pressure CP feed; ensure fuel lubrication and ventilation of overall system up to CP return top/bottom. DRVu/overall return free of bubbles	10	20	330l/h @ 4.0bar_rel
2	min. 4.5	min. 3.5	1.0 - 1.2 max.1.8 U	(300) 500	0	opened I=0A	opened I=0A	For reliable ventilation after suction/HP valve, vent HP part until no bubbles in the DRVu return	5	10	151l/h @ 3.5bar_rel
3	min. 4.5	min. 3.5	max.1.8 U	(300) 500	Start (250)	regulate d	opened <i>I=0A</i>	Ventilation test, i.e. measurement of rail pressure fluctuation If a stable starting pressure is not reached after 60sec. cancel the test	to be determin ed	≤ 180 U	151l/h @ 3.5bar_rel
4	min. 4.5	min. 3.5	max.1.8 U	Pressure/s peed table1	Pressure/ speed table1	regulate d	opened /=0A 0.7A	Leak test (temperature increase DRVu return)		30 U	165l/h @ 3.5bar_rel

Proposal: Agreement of initial commissioning at customer end in vehicle plant with RB.

The sizes marked with a **U** are currently in the process of being defined.

WW-R4_2.01: Information about the initial commissioning

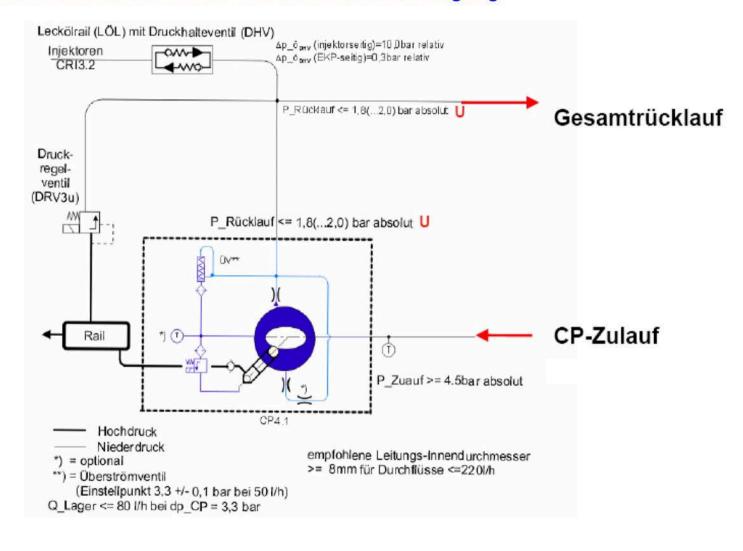
Note the following re the air entry into the LP system before CP4:


If an air column of the CP4 is supplied (e.g. restart after running the tank empty, due to disconnection of CP feed, after a filter replacement) the CP4 cannot feed air column to the rail when the DRVu is closed; no pressure build-up possible. In this case, the DRVu must be de-energized, i.e. open; only then is it possible to direct the air column into the rail via the CP piston and to divert the air further across the DRVu. Detectable in the case of CP4.1 →no build-up of pressure possible.

→ A SW^u is provided in the vehicle for this eventuality.

Version 3: CP4.1 + inline electric fuel pump aiter filter

Common Rail System (CRS3.2) 1800bar, (LP version 3) -temp-low-pressure circuit VW 4 cyl. (2.0I) with CRI3.2, CP4.1 with tank and inline electric fuel pump after filter



German	English				
Common Rail System (CRS3.2) 1800bar, (ND-Variante 3)	Common Rail System (CRS3.2) 1800 bar, (LP variant 3)				
Niederdruckkreis VW 4Zyl. (2,0l) mit CRI3.2, CP4.1 mit Tank- u. Inline-EKP	Low pressure circuit VW 4-cyl. (2.0 l) with CRI3.2, CP4.1 with tank				
nach Filter	and inline electric fuel pump after filter				
-vorläufig-	-preliminary-				
Leckölrail (LÖL) mit Druckhalteventil (DHV) (injektorseitig)=10,0bar	Leakage oil rail (LÖL) with pressure retaining valve (DHV)				
relativ	(injector side)=10.0 bar relative				
(EKP-seitig)=0,3bar relativ	(Electric fuel pump side)=0.3 bar relative				
Injektoren	Injectors				
P_Rücklauf <= 1,8 (2,0) bar absolut	P_return <= 1.8 (2.0) bar absolute				
T-abhaengige Umschaltung (KF)	T-dependent changeover (KF)				
Kraftstoffkühler (Luft)	Fuel cooler (air)				
Druckregelventil	Pressure control valve				
Druckregelventilöl	Pressure control valve oil				
Rail	Rail				
Inline-EKP (RB)	Inline electric fuel pump (RB)				
P_Zulauf >= 4,5bar absolut	P_inlet >= 4.5 bar absolute				
Kraftstofffilter (mit KF und Wasserabscheider)	Fuel filter (with KF and water separator)				
Regler	Regulator				
Hochdruck	High pressure				
Niederdruck	Low pressure				
= optional	= optional				
= Überströmventil	= overflow valve				
(Einstellpunkt 3,3 +/- 0,1 bar bei 50 l/h)	(setpoint 3.3 +/- 0.1 bar at 50 l/h)				
Q-Lager <= 80 l/h bei dp_CP = 3,3 bar	Q-bearing <= 80 l/h at dp_CP = 3.3 bar				
Empfohlene Leitungs-Innendurchmesser	Recommended inside line diameter				
>= 8mm für Durchflüsse <=220l/h	>= 8 mm for flow rates <=220 l/h				
UIS Tankmodul TEE mit EKP	UIS tank module TEE with EKP				
RSV und zulaufbetriebene SP	RSV and inlet-operated SP				

Niederdruckkreis VW-R4 2.0I nach Motorenfertigung

ENTIRE PAGE CONFIDENTIAL

German	English				
Common Rail System (CRS3.2) 1800bar, (ND-Variante 3)	Common Rail System (CRS3.2) 1800 bar, (LP variant 3)				
Niederdruckkreis VW 4Zyl. (2,0l) mit CRI3.2, CP4.1 mit Tank- u. Inline-EKP	Low pressure circuit VW 4-cyl. (2.0 l) with CRI3.2, CP4.1 with tank				
nach Filter	and inline electric fuel pump after filter				
-vorläufig-	-preliminary-				
Leckölrail (LÖL) mit Druckhalteventil (DHV) (injektorseitig)=10,0bar	Leakage oil rail (LÖL) with pressure retaining valve (DHV)				
relativ	(injector side)=10.0 bar relative				
(EKP-seitig)=0,3bar relativ	(Electric fuel pump side)=0.3 bar relative				
Injektoren	Injectors				
P_Rücklauf <= 1,8 (2,0) bar absolut	P_return <= 1.8 (2.0) bar absolute				
T-abhaengige Umschaltung (KF)	T-dependent changeover (KF)				
Kraftstoffkühler (Luft)	Fuel cooler (air)				
Druckregelventil	Pressure control valve				
Druckregelventilöl	Pressure control valve oil				
Rail	Rail				
Inline-EKP (RB)	Inline electric fuel pump (RB)				
P_Zulauf >= 4,5bar absolut	P_inlet >= 4.5 bar absolute				
Kraftstofffilter (mit KF und Wasserabscheider)	Fuel filter (with KF and water separator)				
Regler	Regulator				
Hochdruck	High pressure				
Niederdruck	Low pressure				
= optional	= optional				
= Überströmventil	= overflow valve				
(Einstellpunkt 3,3 +/- 0,1 bar bei 50 l/h)	(setpoint 3.3 +/- 0.1 bar at 50 l/h)				
Q-Lager <= 80 l/h bei dp_CP = 3,3 bar	Q-bearing <= 80 l/h at dp_CP = 3.3 bar				
Empfohlene Leitungs-Innendurchmesser	Recommended inside line diameter				
>= 8mm für Durchflüsse <=220l/h	>= 8 mm for flow rates <=220 l/h				
UIS Tankmodul TEE mit EKP	UIS tank module TEE with EKP				
RSV und zulaufbetriebene SP	RSV and inlet-operated SP				

2 x CP4.2 drivetrain damage cases in US vehicle endurance runs

1 x 45,700 mls in GQ VW endurance run (7L69D025); details p. 2, 3

Pump data: Series pump 0445 010 613; date of manufacture 22/01/2008; copy number 898 Analysis result: Drivetrain damage (cat. 2)

1 x 162,000 km in Audi endurance run (AU716E218); details p. 4, 5, 6

Data: Sample pump 0445B20169_07, date of manufacture 782 (= February 2007);

copy no. 4254

Analysis result: Drivetrain damage (category 2) with red deposits

Notes:

Pumps corresponds to <u>old</u> production status -> without straightedge testing & without improved roller support visual inspection catalog for detection of irregularities -> thus, higher potential for failure with regard to fuels with a low viscosity

Pumps have a roller with supplier 1 -> since WK 20 2008, only supplier 2

Precautionary exchange action on US vehicles done by mid-2008

Overview of all implemented / planned production measures on page 7/8

Diesel systems

1) Damage hypothesis for VW GQ failure (7L69D025, 45 700 mls)

Stiff right roller due to manufacturing abnormalities in combination fuel with low viscosity (lubricant film thickness is not sufficient).

Stiffness of the right roller leads to slip between the roller and cam (braking flats) and overload of C coating (main loading zone) with final turned tappet.

The right tappet damages the camshaft bearing surface and thus, the left tappet assembly.

Further analysis steps @ R.B.

Survey of undamaged areas (right roller support, roller)

01.20.2009

Detailed microscopic analysis (adhesion of coating on right roller support) 01.23.2009

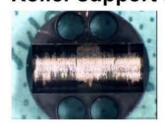
Inquiries @ Audi

Data on fuel quality (HFRR, kinematic viscosity, water) available?

Refueling data of the last locations known?

Was water found in the water separator?

Diesel systems



Pictures of VW GQ failure (7L69D025, 45. 700 mls)

Roller to the left

Roller support to the left

Roller to the right

Roller support to the right

Type plate

Camshaft

2) Damage hypothesis for Audi failure (AU716E218, 162,000 km)

Stiff rollers due to fuel with low kinematic viscosity (lubricant film thickness is not sufficient).

Stiffness of the rollers leads to slip between the rollers and cams (braking flats) and overload of C coating (main loading zone) with final turned tappets.

Further analysis steps

Analysis of the brownish deposits 01.15.09; finished

Result: Corrosion detected -> presence of free water suspected

Survey of undamaged areas (right roller support, roller) 01.20.2009

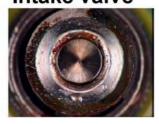
Detailed microscopic analysis (adhesion of coating on roller support) 01.23.2009

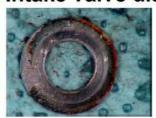
Inquiries @ Audi

Data on fuel quality (HFRR, kinematic viscosity, water) available?

Refueling data of the last locations known?

Was water found in the water separator?


Diesel systems


Pictures of Audi failure (AU716E218, 162,000 km, date of manufacture: February 2007)

Brownish deposits (corrosion?)

Intake valve

Intake valve disk

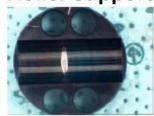
Metering unit

Cylinder head

Diesel systems

Pictures of Audi failure (AU716E218, 162,000 km, date of manufacture: February 2007)

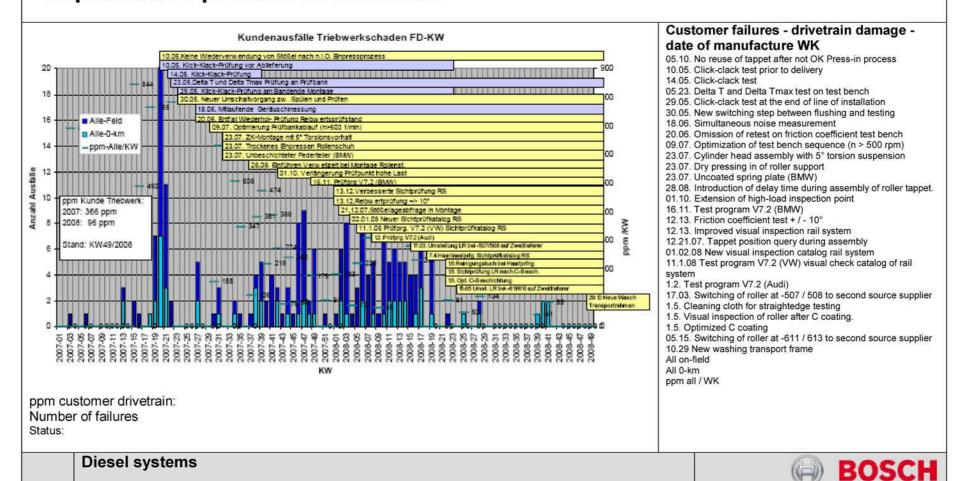
Roller to the left


Roller support to the left

Roller to the right

Roller support to the right

Type plate


Camshaft

Implemented production measures

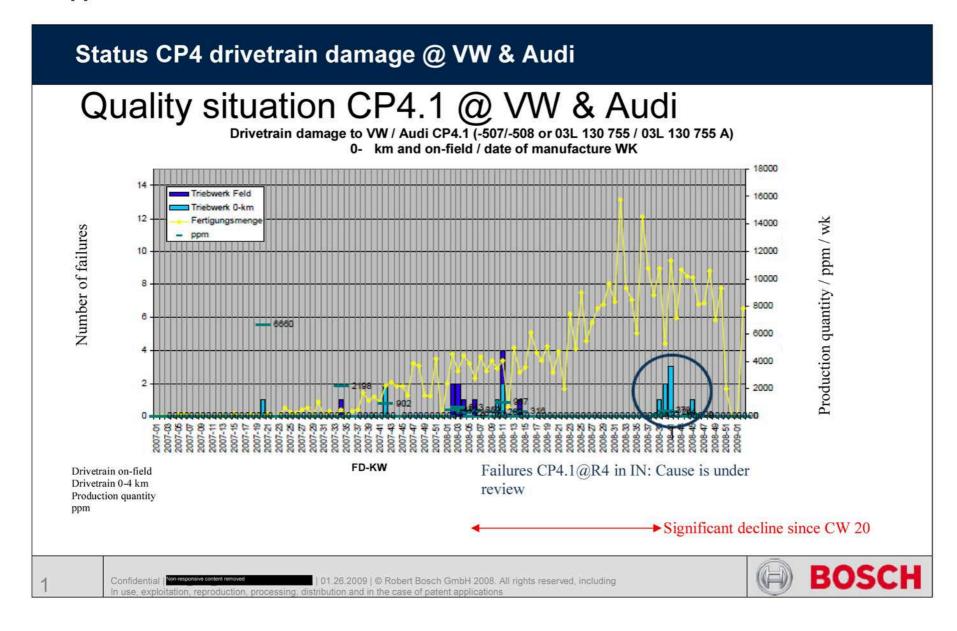
disposal, exploitation, reproduction, editing, distribution, and for the case of industrial property rights.

© Robert Bosch GmbH 2007. All rights reserved, also regarding any

Planned production measures

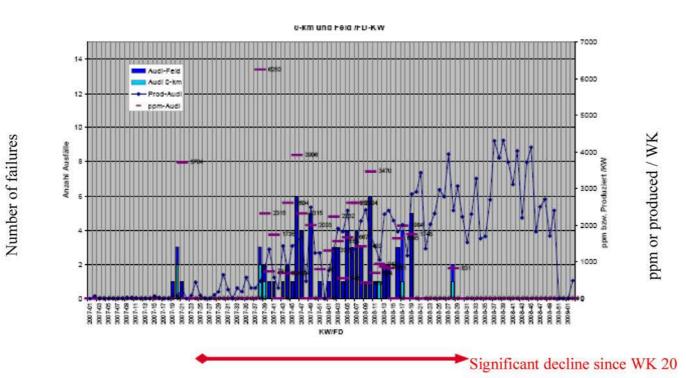
- A) Avoidance of C coating entrainment (pressing in of roller support)
- Crash trials with roller tappets contaminated with C coating particles

D. 09.01


- **B) Large-scale functional testing with increased load** (high rail pressure, low engine speed to increase "detection" in coordination with Audi T.09.01
- D) Detection of metal chips with objective system

D. 09.04

C) Process to avoid melting-induced surface defects on the roller New substrate holder of roller; trials have started, <u>long-term measure</u>



ENTIRE PAGE CONFIDENTIAL

Quality situation CP4.2 @ VW & Audi

Drivetrain damage VW/Audi CP4.2 (-611/613 and/or 059 130 755 AB / AG) 0 km and on-field / date of manufacture WK

Audi Field Audi 0-km Prod-Audi Ppm-Audi

Summary

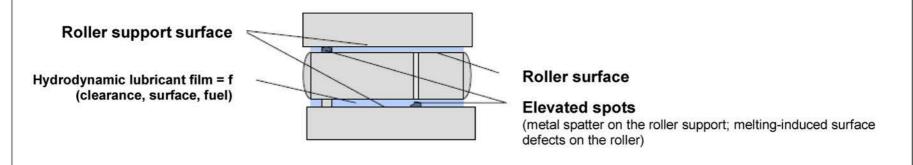
Significant decline in CP4 drivetrain damage - especially on-field since WK 20 2008 Adopt measures to prevent or detect faults in the plant. Other measures are being implemented.

Transition to roller from secondary source supplier shows significant improvement

New finding:

Influence on coefficient of friction in conjunction with fuels with a low viscosity. Further optimization of robustness increase planned, especially for first source supplier by switching to Güntert manufacturing process.

This explains the difference in failure rate between CP4.1 and CP4.2, as CP4.1 are equipped exclusively with Güntert rollers.


Since WK 20 2008 primarily RB internal failures and ZP7 failures (0-km). Causes of these failures are being analyzed.

CP4 drivetrain damage: Damage mechanism:

- unacceptably high mixed friction between roller and roller support cause "local" contacts during operation
- the C coating is disrupted (wear and erosion of the C coating), the coefficient of friction between the roller and roller support increases
- when coefficient of friction between roller and roller support > coefficient of friction between roller and cam -> braking flats
- Abrasive wear, particle formation -> drivetrain damage

Intensification factors: Fuel with a low viscosity, elevated spots on the roller (e...g meltinginduced surface defects) and in the roller support (e.g. metal spatter) surface of roller / roller support

Measures to detect and prevent elevations

Detection of melting-induced surface defects on the roller

- → Straightedge testing for detection of minute raised portions on the rollers (WK15/2008)
- → (Cleaning cloth with straightedge testing (WK 18 / 2008)
- → Visual inspection for roller after C coating (WK 18 / 2008)

Detection of metal spatter in roller support

→ Optimized roller support visual inspection catalog (WK 18 / 2008)

Avoiding melting-induced surface defects on the roller and metal spatter in roller support

→ Optimierung der Abdeckungen in der C-Beschichtungsanlage zur Vermeidung von Aufwürfen an Rollenschuhen (WK 50/2008)

Friction coefficient examinations

Task

→ Determination of coefficient of friction with different roller suppliers & fuels

Results

- → Supplier 1 @ EN590 is comparable with supplier 2, significantly worse with lowviscosity fuels (Sweden diesel, Arctic diesel)
- → Supplier 2 shows little effect on the fuel viscosity
- → Influence of different surface coefficients of the rollers explainable

Note: Switching from supplier 1 to supplier 2

- @ CP4.1 WK 12/08(Fe); WK 04/08(Jihlava plant)
- @ CP4.2 WK 20/08(Fe); WK 44/08(Jihlava plant)

Further work

→ Detailed geometric analysis and repetition of friction coefficient tests with "marginal" rollers 1 & 2

Results from friction coefficient tests

		Roughness - nominal value	Roughness - tolerance patterns		
Fuel designation:	Viscosity at 40 °C [mm²/s]	Friction coefficient at 300 rpm (600 N)	Friction coefficient at 300 rpm (600 N)		
EN590	2.88	0.01	0.01		
GDK570	1.92	0.01	0.04		
Sweden diesel	1.94 to 2.07	0.01	0.04		
Arctic diesel	1.44	0.02	0.06		
Limit:	/	0.035	0.035		

Finding: Marginal rollers (roughness) in combination with fuels with low kinematic viscosity show abnormal friction.

Measures package for reduction of drivetrain damage

No.	Measures to reduce drivetrain damage	Feuerbac	ch plant launch	Einführung JhP		
		Today's date	wĸ	Today's date	wĸ	
1	No reuse of tappet after OK press-in process	5/10/2007	WK19/07	1/31/2008	WK04/08	
2	Click-clack test prior to delivery	5/10/2007	WK19/07	1/31/2008	WK04/08	
3	Click-clack test	5/14/2007	WK0/07	1/31/2008	WK04/08	
4	Delta T and Delta Tmax test on test bench	5/23/2007	WK21/07	1/31/2008	WK04/08	
5	Click-clack test at the end of line of installation	5/29/2007	WK22/07	1/31/2008	WK04/08	
6	Review new switching process between flushing and inspection	5/30/2007	WK22/07	1/31/2008	WK04/08	
7	Simultaneous noise measurement	6/18/2007	WK25/07	1/31/2008	WK04/08	
8	Omission of retest coefficient of friction test rig	6/20/2007	WK25/07	12/1/2007	WK48/07	
9	Optimization of test rig sequence (n > 500 rpm)	7/9/2007	WK28/07	1/31/2008	WK04/08	
10	Cylinder head assembly with 5° torsion suspension	7/23/2007	WK30/07	12/1/2007	WK48/07	
11	Dry pressing in of roller support	7/23/2007	WK30/07	2/6/2008	Wk05/08	
12	Uncoated spring plate (Customer C)	7/23/2007	WK30/07	1/31/2008	WK04/08	
13	Introducing delay time during roller tappet assembly	8/28/2007	WK35/07	2/6/2008	Wk05/08	
14	Extension of high-load inspection point	10/1/2007	WK40/07	1/31/2008	WK04/08	
15	Testing point V7.2 (Customer C)	11/16/2007	WK46/07	1/31/2008	WK04/08	
16	Improved visual inspection of roller support	12/13/2007	WK50/07	1/31/2008	WK04/08	
17	Friction coefficient test + / -10°	12/13/2007	WK50/07	2/7/2008	Wk05/08	
18	Tappet position guery during assembly	12/21/2007	Wk51/07	2/7/2008	Wk05/08	
19	New visual inspection catalog for roller support	1/2/2008	WK01/08	1/20/2008	WK02/08	
20	Test program V7.2 (VW), visual inspection catalog for roller support	11.01.2008	WK02/08	1/31/2008	WK04/08	
21	Test program V7.2 (Audi)	2/1/2008	Wk05/08	1/31/2008	WK04/08	
22	Switching of roller for models 507/508	3/17/2008	WK12/08	1/31/2008	WK04/08	
23	Straightedge testing, visual inspection catalog for roller support	07.04.2008	(WK5/08)	07.04.2008	WK14/08	
24	Cleaning cloth with straightedge testing	5/1/2008	WK8/08	5/1/2008	WK7/08	
25	Visual inspection of the roller after C-coating	5/1/2008	WK8/08	5/1/2008	WK7/08	
26	Optimization of the C-coating	5/1/2008	WK8/08	5/1/2008	WK7/08	
27	Switching of roller for models 611/613 to second source supplier	5/15/2008	WK0/08	03.11.2008	WK4/08	
28	New washing and transport frame for the roller	10/29/2008	WK4/08	10/29/2008	WK4/08	
29	Graphite / boron nitride deposits, holder in C-coating system	12.12.2008	WK50/08	12.12.2008	WK50/08	
30	Camera system for detecting metal spatter on roller support		WK19/09		WK19/09	
31	Modified rail system holding tool when pressing in the tappet body	24.11.2008	WK48/08		WK6/09	
32	Optimized substrate holder to prevent melting-induced surface defects on roller, at the earliest		from WK 32/09		from WK 32/09	

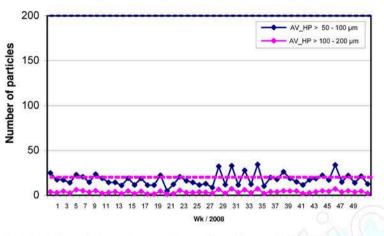
Legend

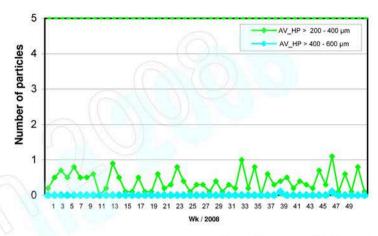
Measure implemented

Implementation overshot

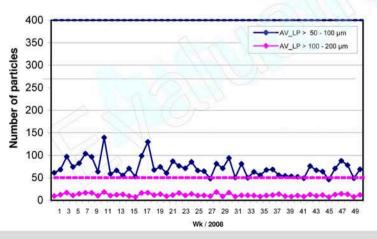
the schedule

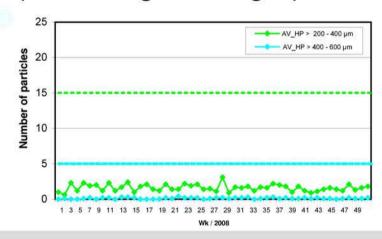
Implementation is not target-oriented and/or effectiveness is reviewed

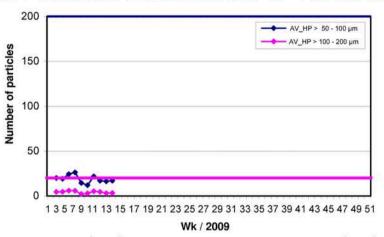

→ ~ WK20

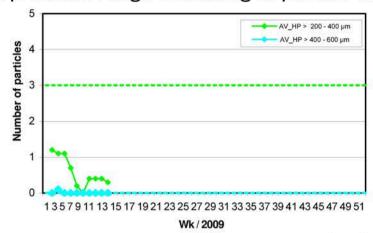


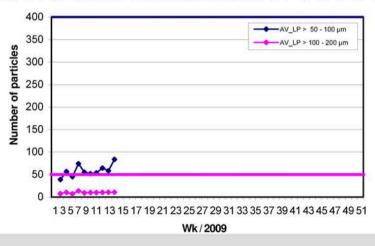
Cleanliness status CP4 FeP/JhP

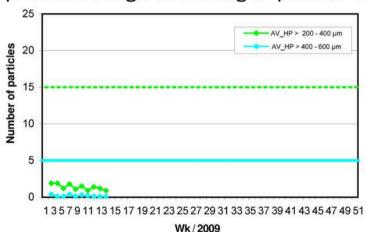


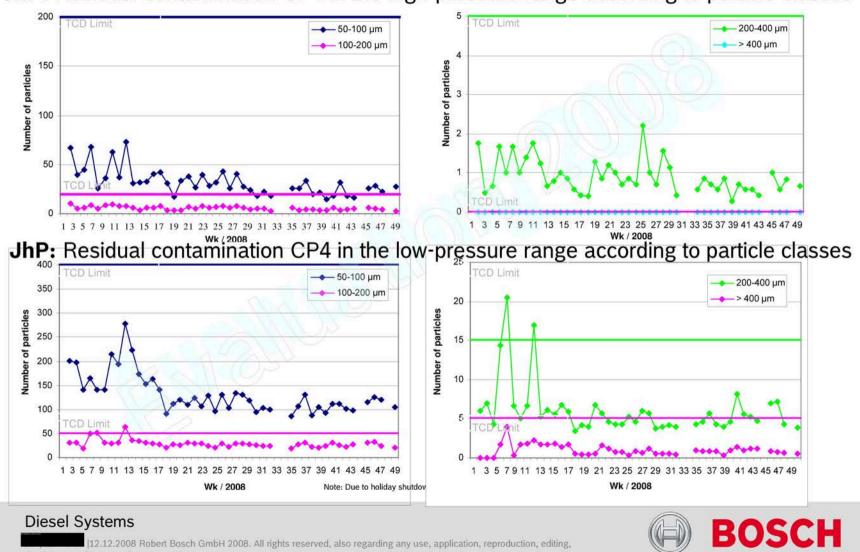

FeP: Residual contamination CP4 in the high-pressure range according to particle classes

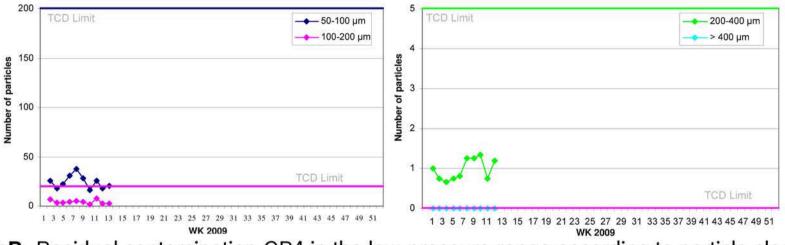

FeP: Residual contamination CP4 in the low-pressure range according to particle classes

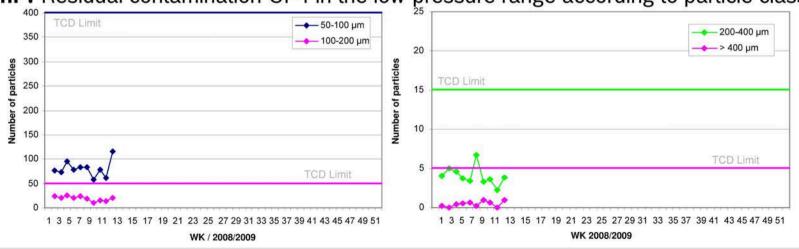




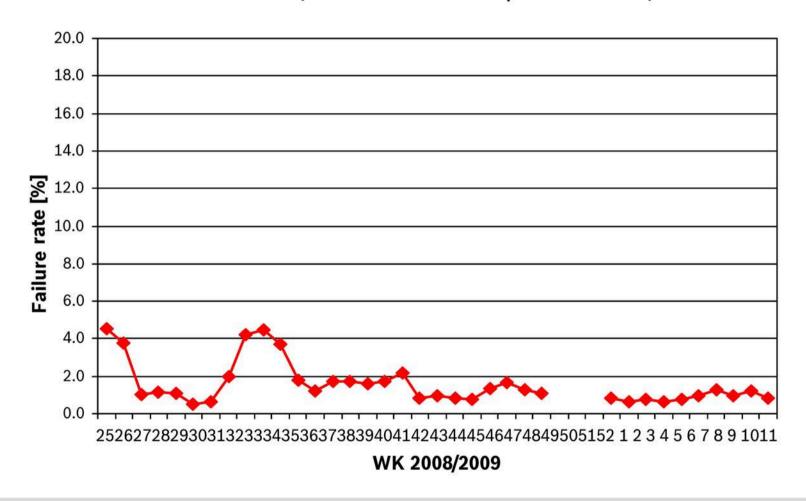

FeP: Residual contamination CP4 in the high-pressure range according to particle classes


FeP: Residual contamination CP4 in the low-pressure range according to particle classes

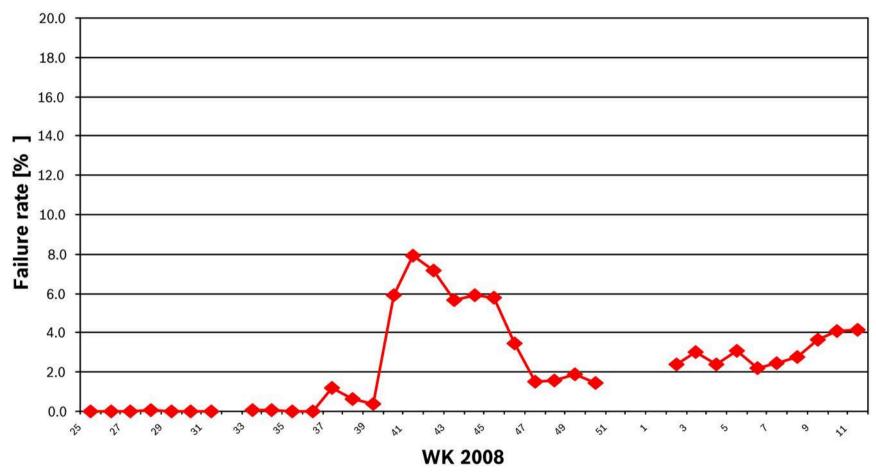

JhP: Residual contamination CP4 in the high-pressure range according to particle classes


distribution and in case of property rights.

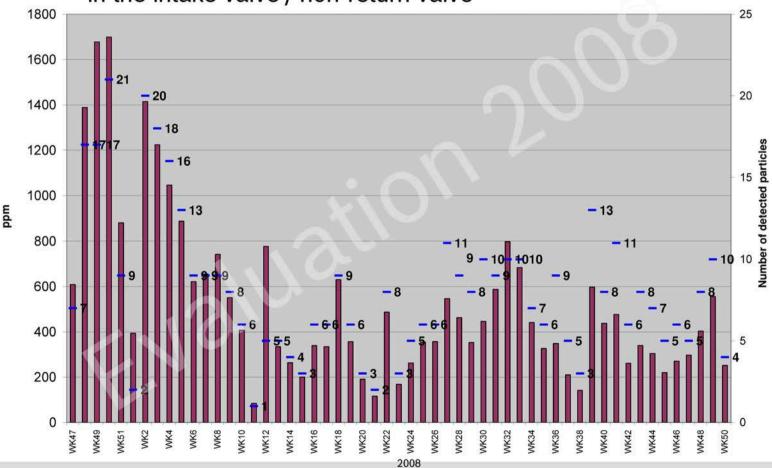
JhP: Residual contamination CP4 in the high-pressure range according to particle classes


JhP: Residual contamination CP4 in the low-pressure range according to particle classes

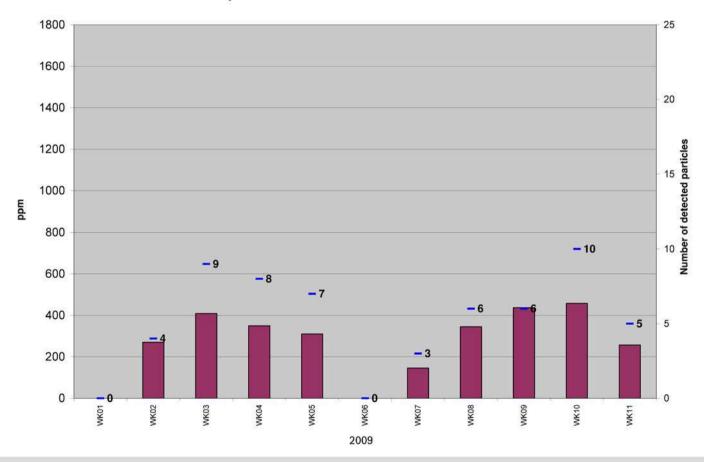
Diesel Systems



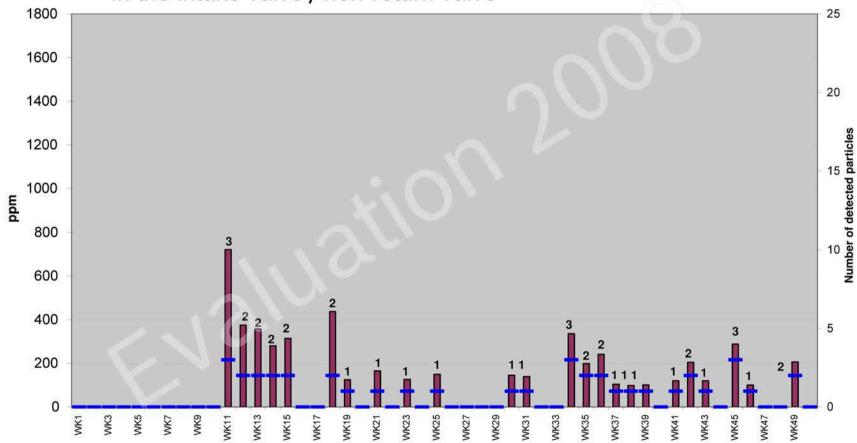
FeP: Visual check of MU4 (Failure rate due to particles in %)


JhP: Visual check of MU4 (Failure rate due to particles in %)

Note: Due to holiday shutdown, there is no data available for WK 32-33.

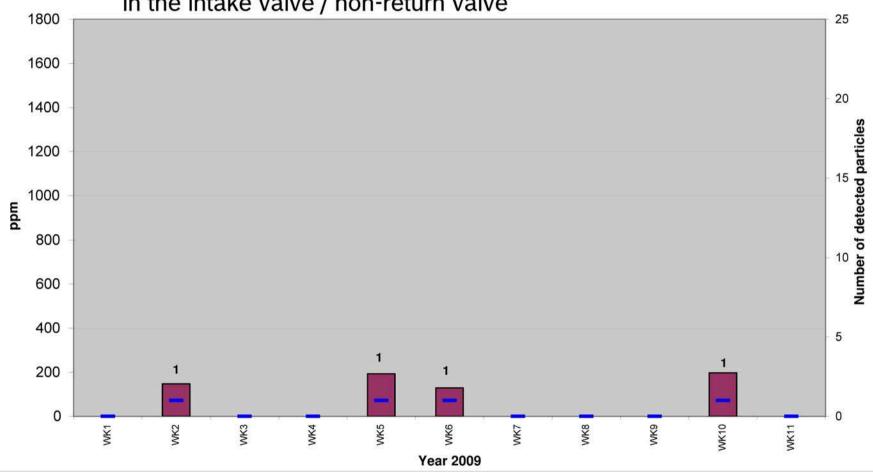


FeP: CP4 product, internal rail pressure failures with particles detected in the intake valve / non-return valve



FeP: CP4 product, internal rail pressure failures with particles detected in the intake valve / non-return valve

JhP: CP4 product, internal rail pressure failures with particles detected in the intake valve / non-return valve

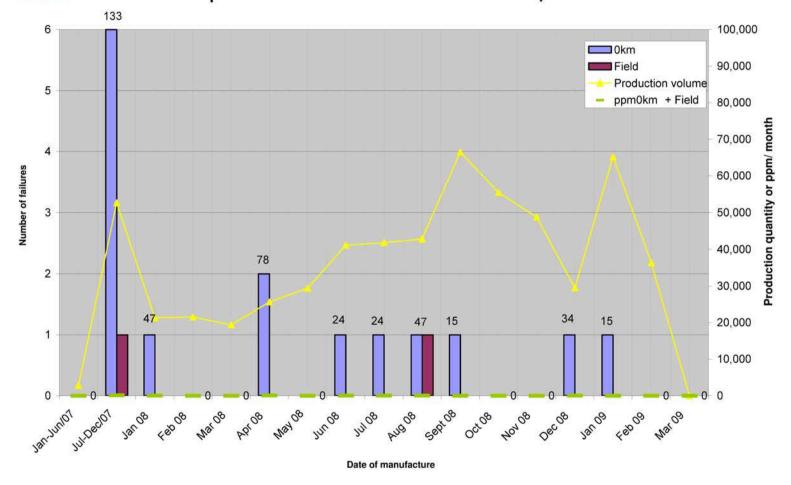

Note: Due to holiday shutdown, there is no data available for WK 32-33.

Diesel Systems

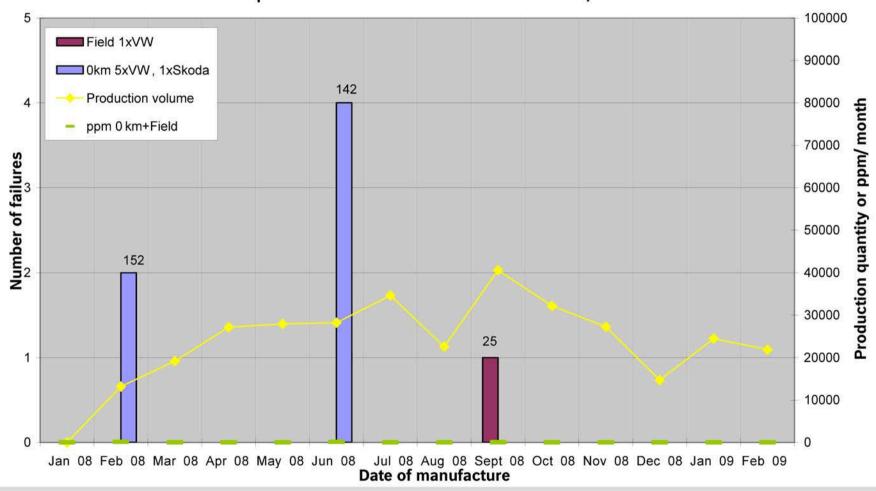
BOSCH

12.17.2008 Robert Bosch GmbH 2008. All rights reserved, also regarding any use, application, reproduction, editing, distribution and in case of property rights.

JhP: CP4 product, internal rail pressure failures with particles detected in the intake valve / non-return valve


Diesel Systems

M2.13 | 01.28.2009 Robert Bosch GmbH 2008. All rights reserved, also regarding any use, exploitation, reproduction, disposal, utilization, reproduction, processing, forwarding and any applications for patents.



FeP: Particle complaints confirmed in CP4 at VW/Audi

JhP: Particle complaints confirmed in CP4 at VW/Audi

FeP/JhP: Measures for reducing residual contamination: Housing and flange manufacturing for CP4

No.	. Measure to reduce residual dirt	Housing	Flange	Introduction FeP		Introduction JhP	
		l location ig	i lunge	Date	wĸ	Date	WK
1	Detachment of joint bore Metering unit CH	х		2/7/2008	6	2/18/2008	8
2	Housing holder on robot gripper	х		2/15/2008	7	2/20/2008	8
3	Ventilation of vacuum chamber, dry cleaning system	х		2/14/2008	7	3/3/2008	10
4	Housing holder on onward transport	х		2/15/2008	7	2/22/2008	8
5	Processing, clamping concept	x		02/8/2008	10	2/20/2008	8
6	Chamfer on 90 degree cutting (external contour)	x		02/8/2008	10	2/20/2008	8
7	Outlet, processing of clamping concept (external contour)	x		02/8/2008	10	2/20/2008	8
8	Optimized version of gripper pins (housing holder in dry cleaning system)	x		2/6/2008	10	3/10/2008	11
9	Floating housing holder (in x, y and z direction in the dry cleaning system)	х		2/15/2008	7	3/10/2008	11
10	MU barreling out "acute-angled" intersection	х		4/10/2008	15	6/15/2008	24
11	O-ring recess, cyl. intake Head	х	i i	4/10/2008	15	4/18/2008	16
12	Axial "lubrication indent with inclined cast	х		1.Q. 2009		1.Q. 2009	
13	Processing of installation clamping surface	х		Q3 2009		Q3 2009	
14	Chamfer towards tappet	х		3/10/2008	11	3/3/2008	10
15	"Press" chamfer to the sleeve	х		3/12/2008	11	3/12/2008	11
16	Incorporation of a radial groove		х	postponed		postponed	
17	Deburring of the outward size 19 chamfer edge		x	2/15/2008	7	3/12/2008	11
18	Replacement of the cast casting stamp in "embossed"	x		5/5/2008	19	5/5/2008	19
19	Cleaning chamber is flushed after every cleaning process (3 cleaning levels)		x	2/15/2008	7	2/20/2008	8
20	Application of 45 degree chamfer to blank	х		1.Q. 2009		1.Q. 2009	
21	Cast optimization in clamping concept	х		1.Q. 2009		1.Q. 2009	
22	Cast chamfer on DMC surface	х		Q1 2009		Q1 2009	
23	Discharge treatment Clamping concept	x		Q1 2009		Q1 2009	
24	Use of ball cutter to improve burr situation, cylinder head intake for MU	x		4/20/2009	17	4/20/2009	17

Legend:

Introduced

Introduction to plan Introduction date has passed

Implementation is not effective/ effectiveness will be checked

FeP/JhP: Measures for reducing residual contamination: Assembly and preassembly of CP4

No.	IOI STATEMEN MEASURE TO REQUICE RESIDUAL DIFF	Pre-assembly cylinder head	Assembly	Introduction FeP		Introduction JhP	
				Deadline	WK	Deadline	WK
1	Optimization of the press stamp to avoid particles as the stamp moves backwards		х	2/18/2008	8	3/27/2008	13
2	Milk runner: Statement concerning empty gripper container from filling with suction gun		х	2/23/2008	8	3/5/2008	10
3	Clearing of the metering unit support in the area of the MU strainer to avoid picking up particles		х	2/18/2008	8	3/5/2008	10
4	Reduction of the area of the support of the MU lubrication unit to avoid picking up particles		х	2/18/2008	8	3/5/2008	10
5	Masking MU and intake bore to avoid particles from being picked up during transport and handling in main assembly		x	12/19/2007	51	1/31/2008	5
6	Remove pinch points on housing supports to prevent production of particles		х	3/18/2008	12	4/16/2008	16
7	Reduction flange surface for avoiding absorption of particles		x	3/10/2008	11	3/5/2008	10
8	Workpiece support: Reduction of the area of the support of the roller tappet as a mandrel to avoid picking up particles		x	2/29/2008	9	3/14/2008	11
9	Housing delivered in a blister pack instead of steel frame to avoid producing particles		х	3/14/2008	11	3/7/2008	10
	Fix the control console position to avoid collisions with the station frame		х	3/14/2008	11	4/4/2008	14
11	Clad the guide rails of the safety door to avoid carrying particles on roller tappets		x	3/7/2008	10	4/17/2008	16
12	Masking intake bore in the cylinder head to avoid particles from being picked up during transport and handling in main assembly	x		2/19/2008	8	3/5/2008	10
13	Pneumatic purging of pre-assembled cylinder head to remove particles from assembly processes in return intake valve and intake valve	x		3/5/2008	10	4/17/2008	16
14	Optimize the cylinder head geometry to avoid the creation of splintering during the screwing process	x		6/18/2008 	25 -38 40	-6/18/2008 9/15/2008 partial from Wk 40; complete from 10/13/2008	25 -38 40
15	Optimize the EOL test (better detection of functional testing)		х	6/9/2008	24	7/21/2008	30
16	Improved bolting process locking screw> monitoring by the laser measurement system	x		4/30/2009	18	4/30/2009	18
17	Addition of the MU with reduced degree of freedom		х	5/31/2009	22	5/31/2009	22

Legend:

Introduced

Introduction to plan Introduction date has passed

Implementation is not effective/ effectiveness will be checked

EA11003EN-01372[0]

ENTIRE PAGE CONFIDENTIAL

Date: 7/19/2007 6:27:25 PM

Subject: Re: Minutes from OEM meeting on CP4.x turned tappet from 7/13/2007 - Item 4

Inspection oil quality CP4

Dear Non-responsive content remov

Regarding your question relating to the HFRR value, please consider the following:

- Inspection oil contains anti scuff additives. The effect is specified and must be proven by the supplier in a FBBD (Four Ball Bearing) test.
- HFRR is a standardized test used to determine wear (ball on plate). In other words, it is a measure of the amount of wear. The test runs in the mixed friction area.
- It is possible to measure wear and friction in the HFRR test. However, a correlation of these parameters cannot be proven. This is partly due to the wide dispersion of the HFRR results in the test per se and also to the fact that different wear mechanisms (tribochemical wear/abrasive wear/adhesive wear) are involved here.
- This means that the HFRR value is not a suitable parameter with which to assess friction behavior.
- The HFRR value is relatively high for the inspection oil used in order to ensure a certain running in (abrasion/ smoothing of the surface tips of the parts).

Friction is affected by the following parameters:

- For the hydrodynamic element of friction: f (viscosity of the inspection oil) --> viscosity is specified and is tested (per delivery batch)
- Impurities in the inspection oil:
- 1. Caused by particles: --> inspection oil is filtered or tested with regard to contamination in the circuit (on a weekly basis).
- 2. Chemicals in the inspection oil: --> The chemical composition is tested using the FTIR (Fourier Transform Infrared Spectrometry) spectrum (per delivery batch)
- In our opinion therefore, the key parameters that influence the friction properties of the inspection oil are monitored.

Best regards / Mit freundlichen Grüßen / Cordiali saluti

Robert Bosch GmbH, Domicile: Stuttgart, Court of Registry: Local District Court Stuttgart Commercial Register No. 14000

Chairman of the Supervisory Board: Hermann Scholl; Management: Franz Fehrenbach, Siegfried Dais; Bernd Bohr, Wolfgang Chur, Rudolf Colm, Gerhard Kümmel, Wolfgang Malchow, Peter Marks;

Volkmar Denner, Peter Tyroller

ENTIRE PAGE CONFIDENTIAL

Non-responsive content remove

Sent: Thursday. July 19, 2007 12:54 PM

To: Non-responsive content removed

Subject: Re: Minutes from OEM meeting on CP4.x turned tappet from 7/13/2007 - Item 4 Inspection oil quality CP4

As discussed, please reply.

Best regards / Mit freundlichen Grüßen

Non-responsive conten t removed

From: Non-responsive content removed

Sent:Thursday, July 19, 2007 8:08 AM

To:Non-responsive content re

Cc:moved

Subject: ANS: Minutes from OEM meeting on CP4.x turned tappet from 7/13/2007 - Item 4 Inspection oil quality CP4

Hello

Why is the lubrication not being monitored? I thought that was the whole idea?

----Or<u>iginal message----</u>

From: Non-responsive content removed

Sent:Wednesday, July 18, 2007 6:26 PM

To: Non-responsive content removed Non-responsive content removed

CcNon-responsive content removed Non-responsive content removed

Subject: Minutes from OEM meeting on CP4.x turned tappet from 7/13/2007 - Item 4 Inspection oil quality CP4

Hello,

In the meeting on 7/13/2007, a presentation on the monitoring of the inspection oil quality at RB was requested.

- 1) Inspection oil used: Shell V-Oil 1404 (trade name)
- 2) The following parameters are monitored: appearance, viscosity, color, density. These are verified by the supplier by means of a certificate.

In the goods receiving inspection at RB, these parameters and the water content and the FTIR spectrum are determined.

Attached are the results of the goods receiving inspection in 2007

EA11003EN-01372[2]

ENTIRE PAGE CONFIDENTIAL

<<V1404_AnfrageCP4_VW.pdf>>
Best regards / Mit freundlichen Grüßen

Non-responsive content removed

70442 Stuttgart GERMANY www.bosch.com

Non-responsive conte nt removed

Domicile: Stuttgart, Court of Registry: Local District Court Stuttgart Commercial Register No. 14000 Chairman of the Supervisory Board: Hermann Scholl; Management: Franz Fehrenbach, Siegfried Dais; Bernd Bohr, Wolfgang Chur, Rudolf Colm, Gerhard Kümmel, Wolfgang Malchow, Peter Marks; Volkmar Denner, Peter Tyroller

Paynter Chart 0km and field failures CP4.1 for all plants (VW and AUDI), FeP

Status: 4/9/2008

Production period		Jan 07	Feb 07	Mar 07	Apr 07	May 07	June 07	Jul 07	Aug 07	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb 08	Mar 08	No of units 07/01-08/01	РРМ
Supply Qty to Györ/ Chemnitz/Salzgitter		0	155	0	168	300	1,082	976	1,701	3,168	6,432	13,056	9191	13,920	13,248,	12,192	75,589	PPM
Drivetrain damage /	0km				Í	1					2					3	6	79
Turned tappet	Field																0	0
Particles IV	0km									1	2	1		1			5	66
Particles IV	Field									1							1	13
Particles NRV	0km																0	0
Particles NRV	Field].											0	0
MILO sing damaged	0km										5						5	66
	Field										2						2	26
Looky shaft soal	0km					is .				Į.	1						1	13
Leaky shaft seal	Field																0	0
Crack on culinder boad	0km														Ĭ		0	0
Crack on cylinder head	Field									20							0	0
Chemnitz pressure retaining test	0km	1						1	2	1	3	7					15	198
not OK, RB OK according to spec.	Field																0	0
Gentler Balls de Suga 1950	0km				1	1											2	26
OK according to specification	Field									- 1	ij						0	0
Customer error	0km											2					2	26
(shaft seal folded)	Field															-	0	0
- the contract of the contract	0km			7	1												0	0
t.b.d.	Field																0	0
Total	0km	1	0	0	1	2	0	1	2	2	13	10	0	1	0	3	36	
of complaints	Field	0	0	0	0	0	0	0	0	1	2		0	0	0	0	3	
. — 1940 04 0000000000000000000000000000000	ppm 0km	1,27	0	0	5,952	6,667	0	1,025	1,176	631	2,021	766	0	72	0	246		476
	ppm Field	1003	0	0000		0,007	0	0	0	316		0	0	0	0		l t	40
	0km	0				1	0		0	1	10		0		0	-	17	
	Field	0				0	0	0	0	1	2		0	0	0	170	3	
ALDER OF THE STATE	ppm 0km		0	0		3,333			0	316		11.4	0	72	0		, ,	225
	ppm Field	12	0	1000	0.738	0,000	0	0	0	316	311	0	0	0	0			40

Paynter Chart 0km and field failures CP4.1 for Chemnitz and Salzgitter plants (VW), FeP

Status: 4/9/2008

Production period	î .	Jan 07	Feb 07	Mar 07	Apr 07	May 07	June 0	7 Jul 07	Aug 07	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb 08	Mar 08	No of units 07/01-08/01	PPM
Supply Qty (507) (to Chemnitz / Salzgitter)		0	100	0	168	246	384	864	1,317	2,880	4,704	5,376	4,800	5,472	1,920	2,688	30,919	2000
Drivetrain damage /	0km					1					2						3	97
Turned tappet	Field																0	(
Particles IV	0km			[]													0	(
raiticles iv	Field			î .													0	(
Particles NRV	0km			,													0	0
r articles NIV	Field																0	(
MU O-ring damaged	0km								4								0	(
Wo O-ring damaged	Field										1						1	32
Leaky shaft seal	0km										- 1						1	32
Leaky Shart Sear	Field																0	C
	0km	1						- 1	2	1	3	7					15	485
OK, RB OK according to spec.	Field																0	C
OK according to specification	0km				1	1											2	65
	Field																0	(
Customer error	0km																0	(
(shaft seal folded)	Field																0	(
270.3	0km																0	0
t.b.d.	Field																0	(
Total	0km	1	0	0		2			2		6		0	0	0		21	
of complaints	Field	0		0		0	0	0		0	1	0	0	0	0		1	
	ppm 0km	0		0	5,952	8,130		1,157	1,519		1,276	1,302			0			679
rotai ppiii-quota	ppm Field	0	0	0	0	0	0	0	0	0	213	0	0	0	0	0		32
	0km	0	0	0	-	1	0		5.		3	0	100	0	0		4	
edged complaints	Field	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
	ppm 0km	0	0	0	0	4,065	0	0	0		638	0	0	0	0	0		129
acknowledged ppm-quota	ppm Field	0	0	0	0	0	0	0	0	0	213	0	0	0	0	0	1 1	32

Paynter Chart 0km and field failures CP4.1 for Györ plant (AUDI), FeP

Status: 4/9/2008 -

Non-responsive content removed	

Production period		Jan 07	Feb 0	7 Mar 07	Apr 0 7	May 07	June 0	7 Jul 07	Aug 07	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb 08	Mar 08	No of units 07/01-08/03	РРМ
Supply Qty (507) (to Györ)		0	55	5 0	0	54	698	112	384	288	1,728	7,680	4,391	8,448	11,328	9,504	44,670	r-m:
Drivetrain damage /	0km															3	3	67
Turned tappet	Field																0	(
Particles IV	0km									1	2	1		1			5	112
Particles IV	Field							Į.		1							1	22
Particles NRV	0km																0	(
Particles NRV	Field							Ĭ.				37					0	(
MILO sing damaged	0km										5						5	112
MU O-ring damaged	Field										1						1	22
Constrain audicular band	0km							0									0	(
Crack on cylinder head	Field																0	(
OK according to specification	0km																0	(
OK according to specification	Field																0	(
Customer error (shaft	0km							ľ			Ü	2			Ö		2	45
seal folded)	Field																0	(
	0km																0	(
t.b.d.	Field																0	(
Total	0km	0	() (0	0	0	0	0	1	7	3	0	1	0	3	15	
of complaints	Field	0	(0	0	0	0	0	1	- 1	0	0	0	0	0	2	
	ppm 0km	0	(0	0	0	0	0	3,472	4,051	391	0	118	0	316		336
	ppm Field	0	() (0	0	0	0	0		579	0	0	0	0	0	1	45
	0km	0	() (0	0	0	0	0		7	1	0	1	0	3	13	
daed complaints	Field	0	(0	0	0	0	0	0	1	1	0	0	0	0	0	2	
THE RESERVE OF STREET	ppm 0km	0	(0	0	0	0	0	3472	4051	130	0	118	0	316		291
acknowledged ppm-quota	ppm Field	0	() (0	0	0	0	0	3472	579		0	0	0	0		45

Paynter Chart 0km and field failures CP4.1 and CP4.2 for all plants (AUDI and VW), FeP

Status: 4/9/2008 -

Production period		Jan 07	Feb 07	Mar 07	Apr 0 7	May 07	June 0	7 Jul 07	Aug 0 7	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb. 08	March 08	No of units 07/01-08/03	РРМ
Production volume (507/611		77	189	149	277	756	1,636	3,023	1,905	5,678	12,498	19,032	12,091	20,544	21,120	18,816	117,791	РРМ
Drivetrain damage /	0km					3				3	2					3	11	93
Turned tappet	Field																0	C
Dartistas N	0km			i i	i i					1	2	1		1			5	42
Particles IV	Field									1		- 5					- 1	8
D	0km								1								1	8
Particles NRV	Field																0	0
MILO desidence	0km										5						5	42
MU O-ring damaged	Field			1 (2						2	17
Const. our and had a stand	0km		,									j					0	0
Crack on cylinder head	Field									1		1					2	17
I and the desired	0km										1						-1	8
Leaky shaft seal	Field																0	0
Chemnitz pressure retaining test	0km	1						1	2	1	3	7					15	127
not OK, RB OK according to	504 (1880)																5.0	-
spec.	Field		c.														.0	0
011	0km				1	1				1		1					4	34
OK according to specification	Field																0	0
	0km			1					ļ j			2					2	17
(shaft seal folded)	Field							j									0	0
t.b.d.	0km					te .											0	0
t.b.u.	Field																0	0
	0km	1	0	0		4	0		3	6		11	0	1	0		44	
of complaints	Field	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	5	
Total ppm-quota	ppm 0km	2.987 0		0	3,610	5,291	0	331	1,575	1,057	1,040	578	0	49	0	159		374
Total ppili-quota	ppm Field	0	0	0	0	0	0	0	0	352	160	53	0	0	0	0		42
Total number of acknowl-	0km	0	0	0	0	3	0	0	1	4	10	- 1	0	1	0	3	23	
edged complaints	Field	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	5	
	ppm 0km	0	0	0	0	3968	0	0	525	704	800	53	0	49	0	159		195
acknowledged ppm-quota	ppm Field	0	0	0	0	0	0	0	0	352	160	53	0	0	0	0		42

Paynter Chart 0km and field failures CP4.1 and CP4.2 for Györ plant (AUDI), FeP

Status: 4/9/2008 -

8 -	-
	=

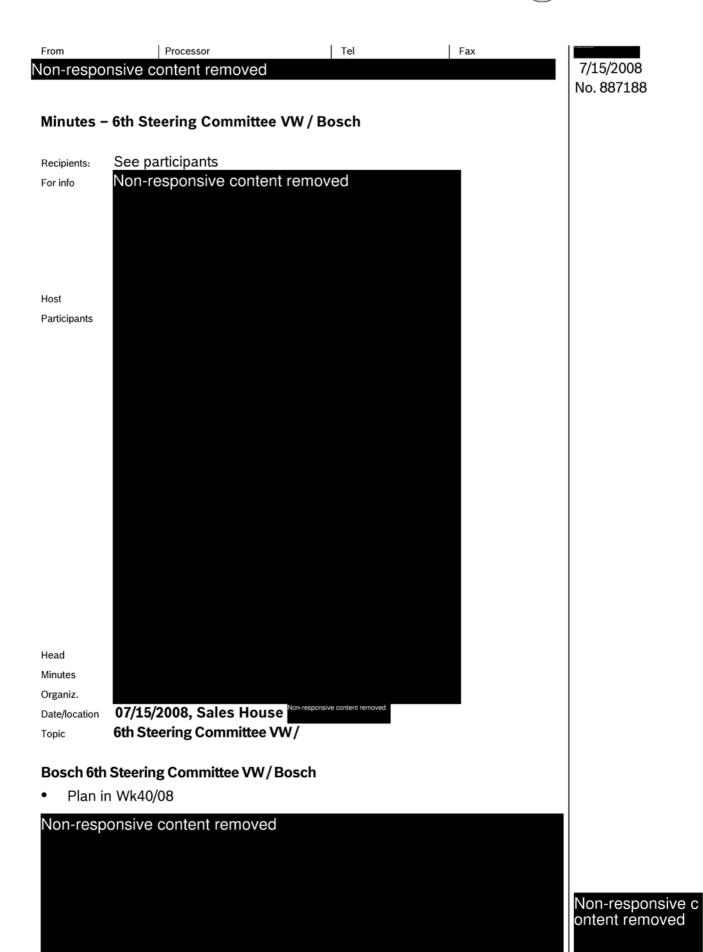
Production period		Jan 07	Feb 07	Mar 07	Apr 07	May 07	June 0	7 Jul 07	Aug 07	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb 08	Mar 08	No of units 07/01-08/03	PPM
Supply Qty (507/611) to Györ		72	55	45	90	504	1,148	490	1,728	2,304	5,184	14,016	8,903	15,072	19,200	16,128	84,939	P504,850.0
Drivetrain damage /	0km					2				3						3	8	94
Turned tappet	Field																0	0
Particles IV	0km									1	2	1		1			5	59
Farticles IV	Field									1							1	12
Particles NRV	0km								1								1	12
Farticles NKV	Field																0	0
MU O-ring damaged	0km						S				5			Į.			5	59
MO O-ring damaged	Field										1						1	12
Crack on cylinder head	0km																0	0
Crack on Cylinder nead	Field									1		1					2	24
Customer error	0km											2					2	24
(shaft seal folded)	Field																0	0
OK according to specifi-	0km						Ü			1			Ŭ I	į			1	12
	Field																0	O
	0km																0	0
t.b.d.	Field																0	0
Total	0km	0	0	0	0	2	0	0	1	5	7	3	0	1	0	3	22	
of complaints	Field	0	0	0	0	0	0	0	0	2	1	1	0	0	0	0	4	
Total num aveta	ppm 0km	0	.0	0	0	3,968	0	0	579	2,170	1,350	214	0	66	0	186		259
	ppm Field	0	0	0	.0	0	0	0	0		193	71	0	0	0	0		47
	0km	0	0	0	0	2	0	0	1	4	7	- 1	0	1	0	3	19	
edged complaints	Field	0	0	0	0	0	0	0	0	2	1	1	0	0	0	0	4	
	ppm 0km	0	.0	0	0	3968	0	0	579	1736	1350	71	0	66	0	186		224
	ppm Field	0	0	0	0	0	0	0	0		193		0		0	0		47

Paynter Chart 0km and field failures CP4.2 for Györ plant (AUDI), FeP

Status: 4/9/2008 -

Production period		Jan 07	Feb 07	Mar 07	Apr 07	May 07	June 07	Jul 07	Aug 07	Sept 07	Oct 07	Nov 07	Dec 07	Jan 08	Feb 08	Mar 08	No of units 07/01-08/03	
Supply Qty (611)																		PPM
to Györ	Ţ	72	0	45	90	450	450	378	1,344	2,016	3,456	6,336	4,512	6,624	7,872	6,624	40,269	
Drivetrain damage /	0km					2				3			- 1				5	124
Turned tappet	Field																0	0
Particles IV	0km							j									0	0
raiticles iv	Field															j	0	0
Particles NRV	0km								1								1	25
Faiticles NKV	Field																0	0
MU O-ring damaged	0km																0	0
Wo O-ring damaged	Field									ĵ							0	0
Crack on cylinder head	0km																0	0
Orack on cynnaer nead	Field									1		1					2	50
OK according to specification	0km									1							1	25
0.000.000.000.0000.0000.0000.0000.0000.0000	Field																0	0
Customer error	0km																0	0
C20/2001 (C0:00000 01.2 % 2024-0150	Field																0	0
t.b.d.	0km																0	0
0290900	Field									l j						j	0	0
Total	0km	0	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	0			4	0		0	0	0			
of complaints	Field	0	0	0	0	0	0			1	0		0	0	0	0	2	
Total ppm-quota	ppm 0km	0	0		0	4,444	0		744	1,984	0	0.751	0	0	0			174
rotal ppin quota	ppm Field	0	0	0	0	0	0		0	496	0	158	0	0	0	0		50
Total number of acknowl-	0km	0	0			2	0		1	3	0	100	0	0	0	0	6	
edged complaints	Field	0	0	0	0	0	0		0	1	0	1	0	0	0	0	2	L
	ppm 0km	0	0			4,435	0		A	1,562	0		0	1770	0	0		149 50
	ppm Field	0	0	0	0	0	0	0	0	521	0	186	0	0	0	0		50

acknowledged complaints


80

EA11003EN-01483[0]

ENTIRE PAGE CONFIDENTIAL

Diesel Systems

Page 1 of 6

EA11003EN-01483[1]

ENTIRE PAGE CONFIDENTIAL

Diesel Systems

| Fax From Processor Tel 7/15/2008 Non-responsive content removed No. 887188 Minutes 6th Steering Committee VW / Bosch Non-responsive content removed Non-responsive content remov ed Non-responsive content removed Non-responsive conte nt removed Non-responsive con tent removed Page 2 of 6

EA11003EN-01483[2]

ENTIRE PAGE CONFIDENTIAL

Diesel Systems

Page 3 of 6

l Fax Processor Tel Non-responsive content removed 7/15/2008 No. 887188 Minutes 6th Steering Committee VW / Bosch Non-responsive content removed Non-responsive c ontent removed -responsive content remove Non-responsive content r emoved Status R4 EA189 Gen1 Impact of Bosch internal measures against drivetrain damage to CP4.1 show success Measures against drivetrain damage: ⇒ Straightedge check

Diesel Systems

Tel Fax From Processor 7/15/2008 Non-responsive content removed No. 887188 Minutes 6th Steering Committee VW / Bosch ⇒ Straightedge check with cleaning cloth ⇒ Visual inspection after C coating ⇒ Optimized C coating have been implemented and further measures defined: ⇒ Avoid metal spatters (graphite / boron nitride covers) on holders in C coating plant) ⇒ Detection of metal spatters (feasibility study of objective) measurement procedure) ⇒ Avoid C layer carry-over (new wash/transport frame) ⇒ Avoid "fusing" (investigation of new holders in C coating with spring-centering for better contact) ⇒ Design change (layer system of cam roller group C3 in C2) Audi will involve VW in searching for the cause of faults for Clean Diesel with Bosch, to capture synergy effects and save time Status R4 EA189 Gen2 Evo1 (CRS2.5) Delivery of D sample for PPS (PPD Wk09/09) Conclusion of reliability test by PPS not possible Non-responsive content removed Non-responsive cont ent removed Non-responsive co ntent removed

Page 4 of 6

EA11003EN-01483[4]

ENTIRE PAGE CONFIDENTIAL

Diesel Systems

Page 5 of 6

From Tel Fax Processor 7/15/2008 Non-responsive content removed No. 887188 Minutes 6th Steering Committee VW / Bosch Non-responsive content removed

EA11003EN-01483[5]

ENTIRE PAGE CONFIDENTIAL

Diesel Systems

Page 6 of 6

EA1106th Steering Committee VW / Bosch

Agenda 6th Steering Committee VW / Bosch on

07/15/2008 in Non-responsive content re moved
Sales House

Diesel Systems

Strictly confidential u | 6/30/2008 | 886209 | © All rights reserved by Robert Bosch GmbH, also with regards to intellectual property rights. All usage rights, including copying and distribution, reserved.

6th Steering Committee VW / Bosch

Non-responsive content remov

- 3. Status of projects:
- 3.1 R4 EA189 Gen1

Non-responsive content removed

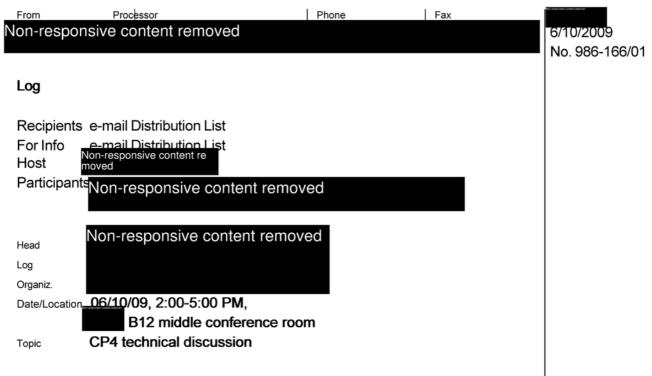
- 4.3 Development status CP4 22/1
- 4.4 Project status VW

RB /Non-responsive conte nt removed VW

RB Non-responsive content remove

RB /Non-responsiv RB /e content rem RB /oved

RB / INon-responsi VW / ve content r RB / emoved


RB/

VW/

BOSCH

Diesel Systems

1) CR overview (attachment 1)

- -The only ongoing CR is the cavitation CR.
- 2) Difference between W36 and current series (attachments 2, 3)
 - Optimized tappet assembly will be pursued as a measure for the current series in the medium term.
 - Why does the omission of the manganese layer result in reduced friction in case of the CP4 (reduction of dissipation)
- 3) Optimization of C layer (attachment 4)
 - AUDI asks how droplets in the C3 coating can be reduced
 - Friction coefficient examinations, feedback of substance analysis values
 - Participation of QA and workshop representatives required.

4) Powertrain damage

Not covered because Non-responsive content remo were absent.

5) VFA delivery

- 5.1) Differences B/D samples
 - No design changes between B and D samples, i.e. running period from B sample CR can be used for approval.
 - Describe differences to D sample series

Non-responsive content re moved signed

Non-responsive conten t removed

7/1/2009

Non-responsive content remove 7/1/2009

CP4.x: US fuel trial

CP4.x: U	5 fue	triai																										
Туре	PNR	Vers.	Pump. No	M status	WDR	cold seal	Pitch	CR progr.				02/11	02/18	02/25	141	T##	12/15	***	01/12	01/19	01/26	02/02	02/09	02/16	44	06/08	Ĭ	
nel nel	063_02	AWP1	686-4106	B1 (C2)	KACO		6	PDL_2000	2000	CR pa	sed																	
PF CP4.1S 00bar, US fue	063_02	AWP1	686-4107	B1 (C2)	KACO		6	PDL_2000	2000	CR pa	sed																	
PF C	060_088	No AWP	690-4592	B1 (C2)	KACO		5.25	PDL_2000	2000	CR pa	sed																	
180	060_088	No AWP	690-4594	B1 (C2)	KACO	- 4	5.25	PDL_2000	2000	CR pa	sed																	
	060_12	AWP1	2000/0040	C2	Bruss	-40°C OK	5.25	PDL_2000	2001	CR pa	sed																	
Bin5	060_12	AWP1	202070041	C2	Bruss	-40°C OK	5.25	PDL_2000	2001	CR pa	sed		ľ															
fuel WR4	060_12	AWP1	2020002	C2	Bruss	-40°C OK	5.25	PDL_2000	2000	CR pa	sed																	
CP4,1S 1800bar, US fuel EE customer VW R4 E	060_12	AWP1	2020/043	C2	Bruss	-40°C OK	5.25	PDL_2000	2000	CR pa	sed																	
C 800bs custor	060_12	AWP1	2020004	C2	Bruss	-40°C OK	5.25	KDL_500	500	CR pa	sed																	
_ ==	060_12	AWP1	20200048	C2	Bruss	-40°C OK	5.25	KDL_500	500	CR wit																		
	060_12	AWP1	20270049	C2	Bruss	9	5.25	KDL_500	549	CR pa	-	i –																
-	154_07	AWP1	690-4589	B2 (C2)	KACO	8	6	PDL_2000	2000	CR pa	sed	1																
2HS, JS fue	154_07	AWP1	690-4590	B2 (C2)	KACO	9	6	PDL_2000	2000	CR pa	sed	1	ľ				i i											
PF CP4.2HS, 2000bar, US fuel	154_10	AWP1	781-4837	B2 (C2)	Bruss	-40°C OK	6	PDL_2000	2000	CR pa	sed	i –																
PF 2000	154_10	AWP1	781-4838	B2 (C2)	Bruss	-40°C OK	6	PDL_2000	2000	CR pa	sed	1																
	169_088	AWP1	783-4680	C2	Bruss	-40°C OK	5.6	PDL_2000	2000		passed lat		warm-															
	169_088	CV6.83	783-4681	C2	Bruss	-40°C OK	5.6	PDL_2000	22000	DL not	finding Of passed lat finding Of	eral roller	warm-						3									
	169_09	AWP1	785-4263	C2	Bruss	-40°C OK (2000h)	5.6	PDL_2700	2000		diagnosis		Continu	e run		2700												
172		E 0456365	150/15/12/05	57.900	5255-T-	-40°C OK	202	DESCRIPTION OF THE PROPERTY OF	The rest	Inter	m diagnos		Continu	e run (wit	h new	v (2000)	-											
3 Bin5	169_09	AWP1	785-4264	C2	Bruss	(2000h)	5.6	PDL_2700	2000	n	sheared		MU O ri			2700												
S, fuel outil VI	169_088	AWP1	783-4678	C2	Bruss	-40°C OK	5.6	KDL_500	500	CR pa	sed																	
ar, US	169_088	AWP1	783-4679	C2	Bruss	-40°C OK	5.6	KDL_500	500	CR pa	sed																	
CP4.2HS, 2000bar, US fuel E customer Audi V6 Bin5	169_09	AWP1	785-4268	3 C2	Bruss	8	5.6	PDL_2000				1720	1887	and the same of	CR passe	d												
EE C	169_09	AWP1	786-4533	C2	Bruss	3	5.6	PDL_2000				1184	Failure, passed	CR not														
	169_17	AWP1	889-4345	D	Bruss		5.6	PDL_2000		Do-	-1						1293	100	1750	19088	2000	CR pass	sed					
	169_17	AWP1	889-4352	D	Bruss		5.6	PDL_2000		like	series, but						1293	224	1750	19088	2000	CR pass	sed					
	169_17	AWP1	889-4353	D	Bruss		5.6	PDL_2000		roller	crest C2.1						1102	77.	1465	1619 1	783 188	9	2000	CR pas	sed			
	169_17	AWP1	889-4354	D	Bruss		5.6	PDL_2000		<u></u>							1102	22	1465	1619 1	783 188	9	2000	CR pas	sed			
24.1 K570	010 508	AWP1	161008- 0895		Bruss	3	5.25	KDL_500												7						314		
On CR 72000ba CP4 GDK5	010 508	AWP1	221008- 1051	Series, however	Bruss		5.25	KDL_500									46	200	489	500	CR pass	sed						
"Cavitation 1800bar CP4.2 EN590	010 624	No AWP	081015- 05388	2.9bar OV	Bruss	×	5.63	KDL_500									0	22	91	927						ntinue ru P4.1 Kav.		
5 8 G	010 624	No AWP	081015- 0539		Bruss	3	5.63	KDL_500												6	1488	316	482	500	CR pas	sed		

ENTIRE PAGE CONFIDENTIAL
Non-responsive content removed
To:

cc

Date: 2/15/2010, 10:22:00 AM

Subject: Statement from laboratory on peculiarities of

For your information:

(DF stand for diesel fuel; Gs stand for gasoline)

Best regards

Non-responsive content removed

From: Non-responsive content removed

Sent: Monday, February 15, 2010, 7:54 AM

Non-responsive content removed

Subject:Re: Slides for meeting on 02/12/2010

Hi all,

For your information.

Best regards

Non-responsive content rem

From: Non-responsive content removed

Sent:Wednesday, February 10, 2010, 11:22 AM

Non-responsive content removed

Subject: ANS: Slides for meeting on 02/12/2010

Hello Non-responsive content rem

I'm afraid everything isn't really specified precisely.

One thing after another:

Brown deposits: It looks like aged DF, possibly decomposition products from FAME. Theoretically limited through the maximum residue levels or soiling.

Sugar solution: doesn't belong in DF at all, but is not explicitly forbidden.

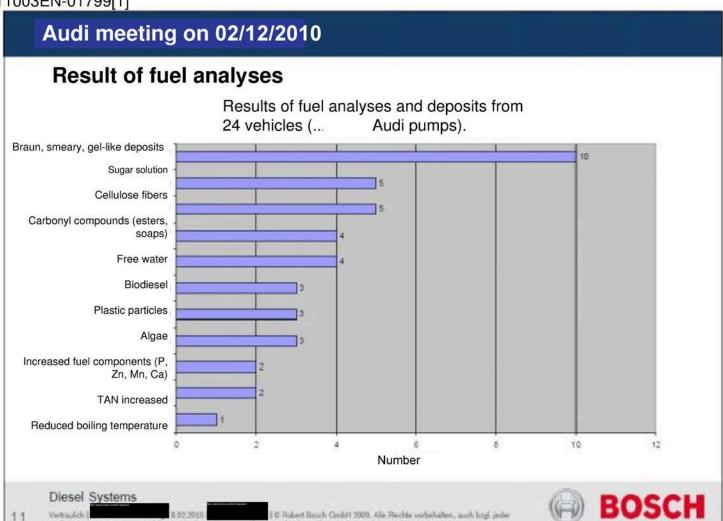
Cellulose fibers/plastic particles: depending on size, they should get caught up in the fuel filter; otherwise only solid particles with max. 24 mg/kg are defined in EN 590.

Carbonyl compounds: biodiesel belongs to this class of compounds

Free water: 200ppm water content is allowed, this low quantity dissolves in B7; therefore, no free water should be present. If free water is found, then the general water content of the B7 DF is too high.

Biodiesel: up to 7% allowed in DF

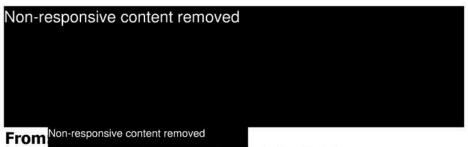
Algae: = biological contamination, results from water + biodiesel. The fuel had some water input (see above limits) and might have been stored for too long, creating ideal conditions for growth of algae/bacteria/fungus. This is not mentioned explicitly in the EN, however (only indirectly through water, Ox stability and solid particles).


Fuel components: are not mentioned explicitly, but only defined through the so-called "ash content" with max. 0.01 %m/m.

TAN: is not defined for DF/biodiesel blend. TAN for pure biodiesel (B100) is defined.

red. boiling temperature: is generally not defined; the conventional value of approx. 160-170°C is generally maintained through the product mix in the refinery. (If Gs or other light volatiles are blended, it may not be possible to achieve the flash point of min. 55°C.)

EA11003EN-01799[1]


ENTIRE PAGE CONFIDENTIAL

10 Robert Bosch Grobit 2009. Alle Rechte vorbehalten, auch forglijeder wie f
ür den Fall von Schutzrechtzammeldungen.

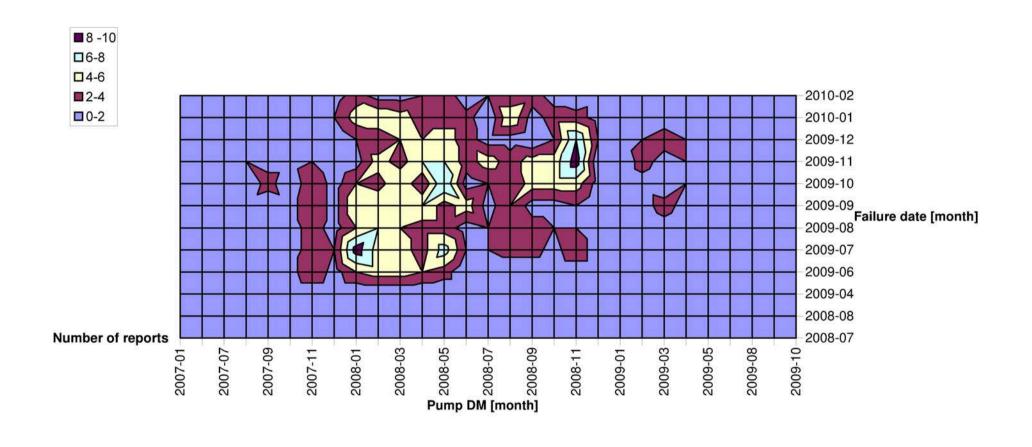
With best wishes

11

Sent: Wednesday, February 10, 2010, 9:17 AM

Non-responsive content removed

Subject:Re: Slides for meeting on 02/12/2010

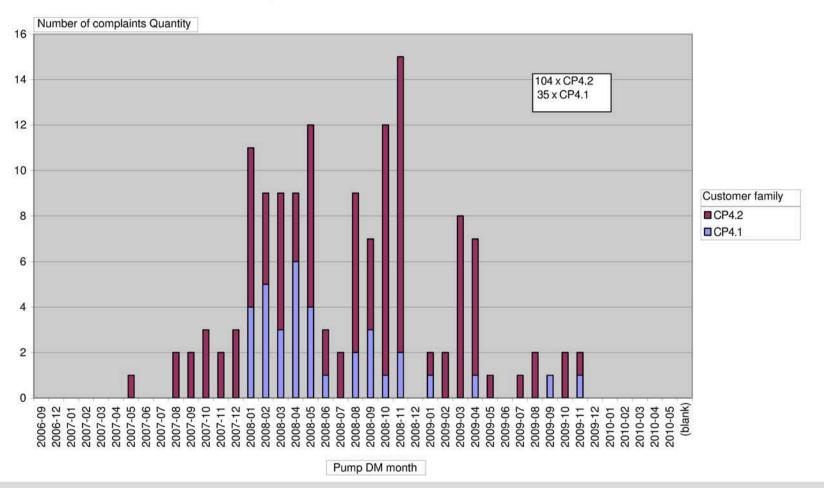

Hello

See slide 11.

What is allowed according to the standard?

With best wishes Non-responsive content remove

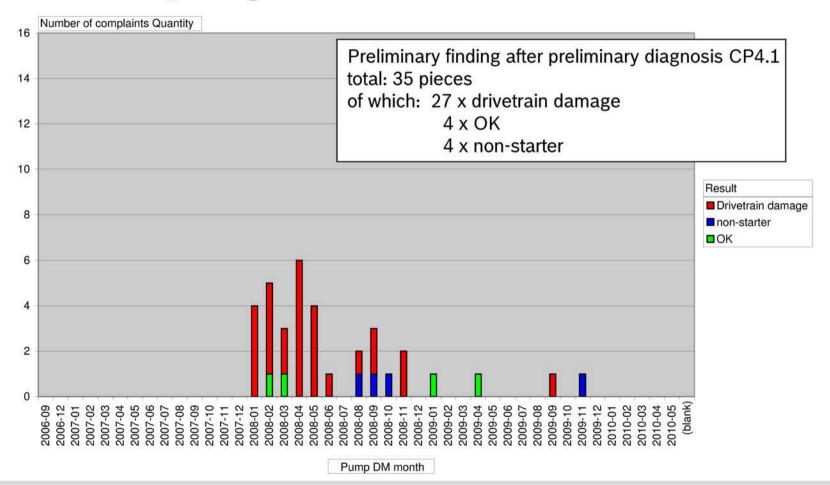
Audi CP4.2 failures



EA11003EN-01801[0]	NTIRE PAGE CONFIDENT	TAL
From: To:	Non-responsive content removed	
CC:		
D. L.	E/00/0040 4 00 40 PM	
Subject:		
	: Überblick Befundung Rücklieferung	Stand-2010-05-26.pdf
Hi all,		
AND THE RESIDENCE OF THE CONTROL OF	CR again - like with the V6, but in a weakened of drivetrain damage up to 05/2008 (AWP 1)	form:
or 06/2009 (AWP 2) at the		Significant improvement from late 2008
	for the intake valve strainer.	→ Ialiule 09/2009 :::
Hello Please send the informa	tion to Non-responsive content removed	
	CONTROL OF THE PROPERTY OF THE	
Attention: Preliminary in Best regards	normation::	
Non-responsive content removed		_
From: Non-responsive cor Sent: Wednesday, May 26		
Non-responsive content re	<u> </u>	
Subject: Repeat findings	CP4 Non-responsive content rem	
Dear Sirs,	'''	
pumps sent back from of which: 35 x CP4.1 (preliminary finding 104 x CP4.2 (open	nitial preliminary analysis results from the CP4 Total: 139 pieces gs) n)	k
Mit freundlichen Grüßen /		
Non-responsive content rem oved		
Robert Bosch GmbH Non-responsive content re ed	mov	

Domicile: Stuttgart, Court of Registry: Local District Court Stuttgart, Commercial Register No. 14000; Chairman of the Supervisory Board: Hermann Scholl; Management: Franz Fehrenbach, Siegfried Dais; Bernd Bohr, Rudolf Colm, Volkmar Denner, Gerhard Kümmel, Wolfgang Malchow, Peter Marks, Peter Tyroller; Uwe Raschke

Diagnosis of return delivery CP4 d Non-responsive content remove


Overview CP4.1 / CP4.2

Diagnosis of return delivery CP4 Non-responsive content

Preliminary diagnosis CP4.1

ENTIRE PAGE CONFIDENTIAL EA11003EN-01852[0] Non-responsive content removed From To: CC: Date: 10/8/2010, 1:14:30 PM Subject: ANS: IQIS:230003014652 QTS 3731540 Info. Hello We will invite you to the next appointment and get you up to date on the latest information; this e-mail ping pong just doesn't make sense. We don't have any problem with the current status after clean date in the customer service case - where did you get that from? Evervthing beyond that will be given to you as quickly as possible, but according to priority, beginning with the AWP as a DIN 590 country, is not among them. Otherwise, please clarify with Q whether you really assume the same necessity. Until then, we will continue with the additional measures in CP4.1 development. Regards Non-responsive content removed Non-responsive content removed Sent: Fri Oct 08 13:32:35 2010 Subject: ANS: IQIS:230003014652_QTS 3731540_Info. Hello Sorry, but I'm not aware of any CP4.1 task force. And I'm not familiar with any coordination with Audi colleagues (QA) either. The fact is that I don't get information from you until asking several times (if at all); I just had to get that off my chest. On the CP4.1 in Our importer expects a fast CS solution, so customers get a "reliable" pump that will not fail a second time. Can we offer him an AWP pump that will fit the "old series" in the field? If I am reading your lists correctly, then the 03L 130 755 A is not slated for RP1; does the lift fit at all? Could we produce a larger lot of gen. 1 pumps in advance for Best regards

Non-responsive content removed

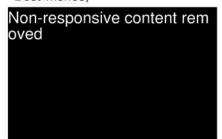
EA11003EN-01852[1]

ENTIRE PAGE CONFIDENTIAL

Non-responsive content removed

Subject: ANS: IQIS:230003014652 QTS 3731540 Info.

Let's please stop the unproductive mail correspondence on the CP4 failures with the large distribution list immediately, and check and coordinate our statements better in future. The task force for the CP4.1 failures, which consults the Audi colleagues regularly, has currently reached a status that can only conditionally confirm your statements after a detailed examination. We and AUDI are in the same place in the failure analysis and therefore support the same corrective measures that you are already familiar with as "anti-wear packages". The only difference is the implementation of the RP packages in the field, where across-the-board introduction is planned by 03/2011 for the CP4.1, due to the project variety and volume requirements in association with limited capacity on the Bosch side. We are regularly tracking this at Bosch, so it should not be conveyed to Bosch from a variety of instances.


The evaluation of the cases of damage in the market carried out in AQUA confirms the effectiveness of the measures introduced so far. The failure figures have declined rapidly in manufacturing year 2010.

While it is correct that we have recorded a large number of failures in 2010, most of them are due to pumps with DM before the clean date To respond to this and if you want to prevent further failures with the old design status, you will have to request a field cleanup.

We hope to further improve the field situation through the anti-wear packages that have already been approved and scheduled, and are also working on further anti-wear measures together with Bosch, which are currently in the development and validation phase.

P.S. BOSCH has been intentionally left out of the e-mail distribution list.

Best wishes,

From: Non-responsive content removed

Sent:Thursday, October 07, 2010, 10:14 AM

Non-responsive content removed

Subject:Re: IQIS:230003014652_QTS 3731540_Info.

has encountered (relatively late / 28,000 km) drivetrain damage cases with the CP4.1 (transverse installation MY10), without any indication of poor fuel quality.

Best regards

From: Non-responsive content removed

Sent:Wednesday, October 06, 2010, 5:11 PM

Non-responsive content removed

ENTIRE PAGE CONFIDENTIAL EA11003EN-01852[2]

Non-responsive content removed

Subject:IQIS:230003014652_QTS 3731540_Info.

Hello,

Please find attached information on the analysis of the CP4 pump

Fault scope

RB Part no. 0445.010.507 AUDI part no. 03L130755

SN: **BPT** 0260 DM: 10/16/2009

ML: 05

IQIS: 230003014652

Ref. no: IGG000006033-001 Customer ref. no. QTS 3731540 Engine no. CBAB 05204

Vehicle No.: WAUZZZ8P5AA

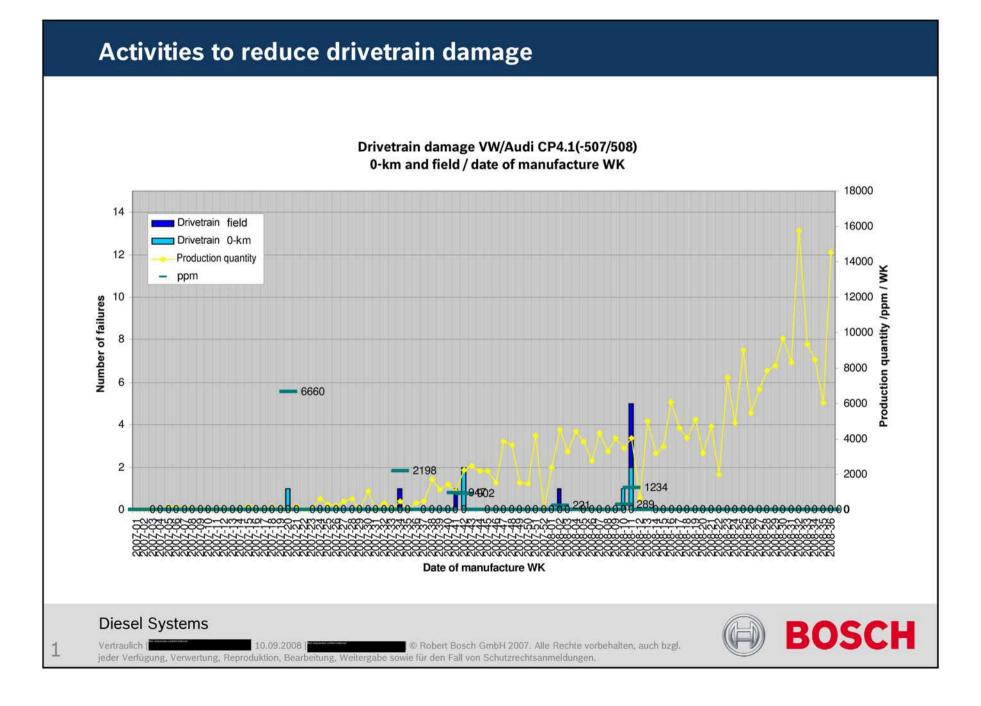
Mileage: 27,818 km

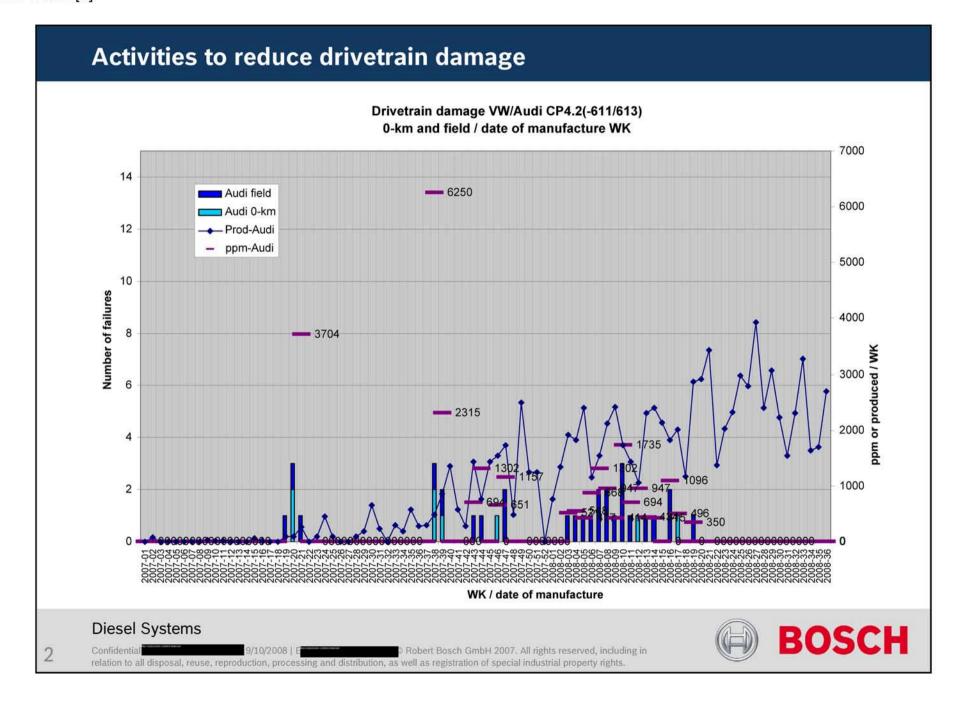
Failure country:

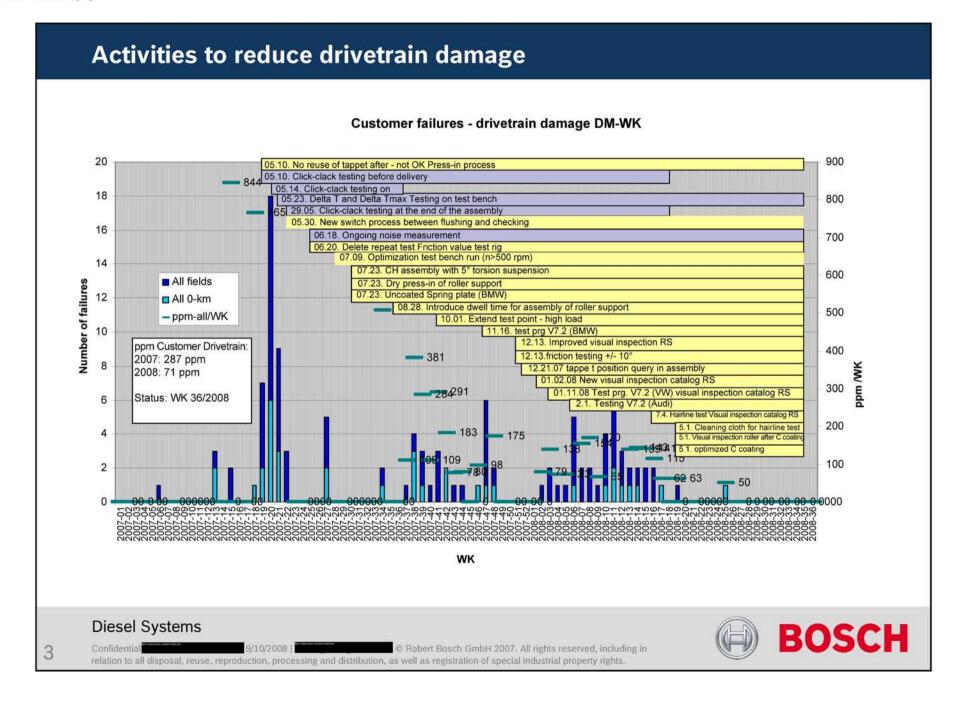
Description of problem

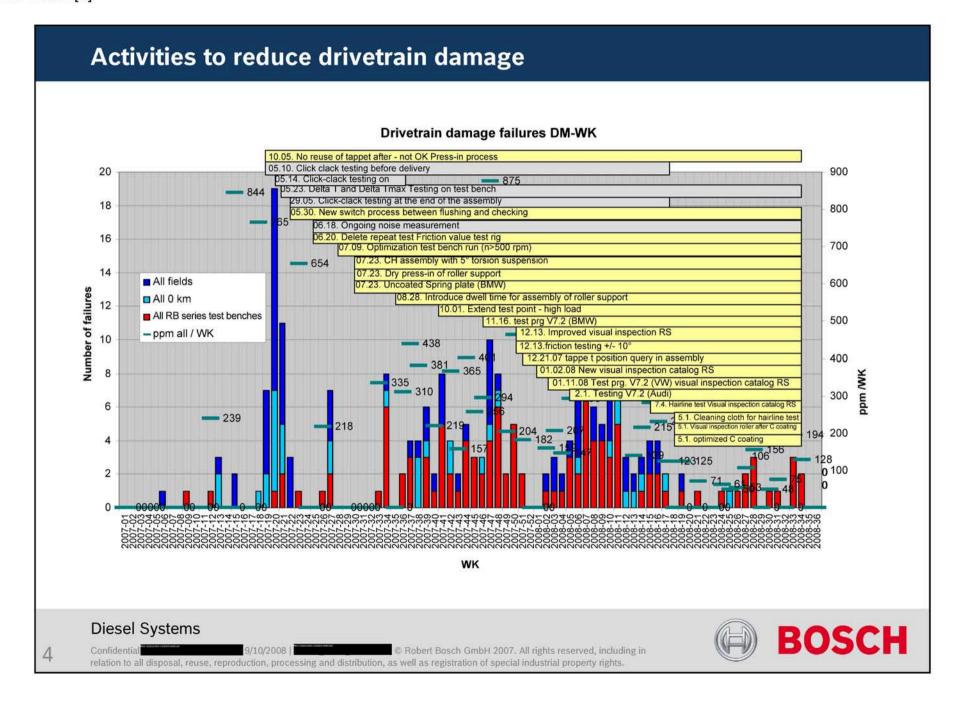
No specification from AUDI

RB analysis:


Roller support worn No deposits or corrosion traces Fuel analysis OK


RB finding


Drivetrain damage Complaint was acknowledged as Bosch defect


Regards

Q situation of drivetrain damage CP4 (09/10/2008)

- Clear decline in the failure figures since DM WK 12 in 0km and field with CP4.1 for VW/Audi
- Clear decline in the failure figures since DM WK 12 in 0km and field with CP4.2 for VW/Audi
- Drivetrain damage continues to be found in internal testing

Activities to reduce drivetrain damage

Task force activities to reduce drivetrain failures

1) Metal splashes

1.1) Avoiding metal splashes

Graphite / boron nitride covers on bracket in the C-coating unit

Testing new unit as of WK 36
 If test successful, planned introduction as of WK 42

1.2) Recognizing metal splashes

Feasibility study for objective measurement processes (completed)

Check received quotes&, technical detailed discussions
 WK 43

Decision about series launch
 WK 44

3) Avoid C coating spreading

New washing / transport frameworks

First 100 (completed)

Complete conversion
 WK 40

4) Avoiding "fusing"

Test new brackets in the C coating with spring centering for better contacting

 Sample, testing, modification, if necessary manufacture again Objective series introduction if testing positive

WK48

5) Change to construction layout

- Change to the coating for on the roller end from C3 to C2 (testing W24 D4, VW package 3)
- Improve secure fit of the roller support / tappet bodies
 R.B. internal testing

WK43

VW/Audi counts 75 (+20 since 08/01/2008) field failures worldwide

- 44 not submitted failures
- 30 of RB confirmed failures
 - 25 x CP4.2
 - 5 x CP4.1

Focus: CP4.2

Vehicles affected:
 Audi Q7; Audi B8; VW Touareg

· Focus countries:

Non-responsive content removed

• DM of the confirmed failed pumps:

before 05/07/2008

Comment: Introduce last production measures 05/01/2008

(offset can be explained by parts breaking off & Optimize testing -> efficiency)

Hairline testing 04/07/2008

Cleaning cloth for hairline testing 05/01/2008

Visual inspection of roller after C coating 05/01/2008

Optimize C coating 05/01/2008

KT analysis of the CP4 drivetrain damage (focus on Non-responsive content removed

(Version 09/09/2008, confirmed failures based on list from Mr.

Failure hypothesis(es)

Combination of pump components with production susceptibilities in connec-

tion with country-specific influencing factors

High

Fuel, transport (Non-responsive content removed and other markets?)

Medium

&/ or

Drive torsional vibrations (stronger torsional vibrations on 2.7 l?)

Low

&/ or

Engines from the Audi plant (only 1 x VW Tiguan)

Medium

The following lists key activities and questions concerning the confirmation / refutation of the above-mentioned failure hypotheses. Detailed tracking will take place via OPL at Non-responsive content removed

Activities

Analyze fuel (basic map of failures)

Engine measurements at Audi (min. / max. belt tension)

Simulation of belt tension

Reappear-tests

Marginal roller with min. belt tension

Marginal roller with kerosene in the fuel

Testing of coverings on pumps

Provocation test with water

(Background: Drivetrain damage without visible traces of corrosion possible?) Test air entry with Q7 NDKL (simulation leasing vehicle)

10/06/2008;

9/26/2008;

(completed)

10/6/2008;

09/24/2008;

(completed)

9/24/2008;

Focus questions to Audi

Is Audi more affected than VW (influence of engines / vehicle plant)? Update VW model vs. delivery figures in list from Mr.

09/10/2008

How are vehicles transported from VW/Audi to Non-responsive content removed

10/06/2008;

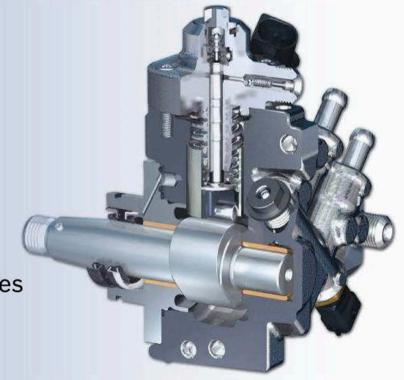
What is the failure situation Inline EFP?

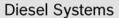
9/15/2008;

Are failures on leasing vehicles (random sample)?

10/06/2008;

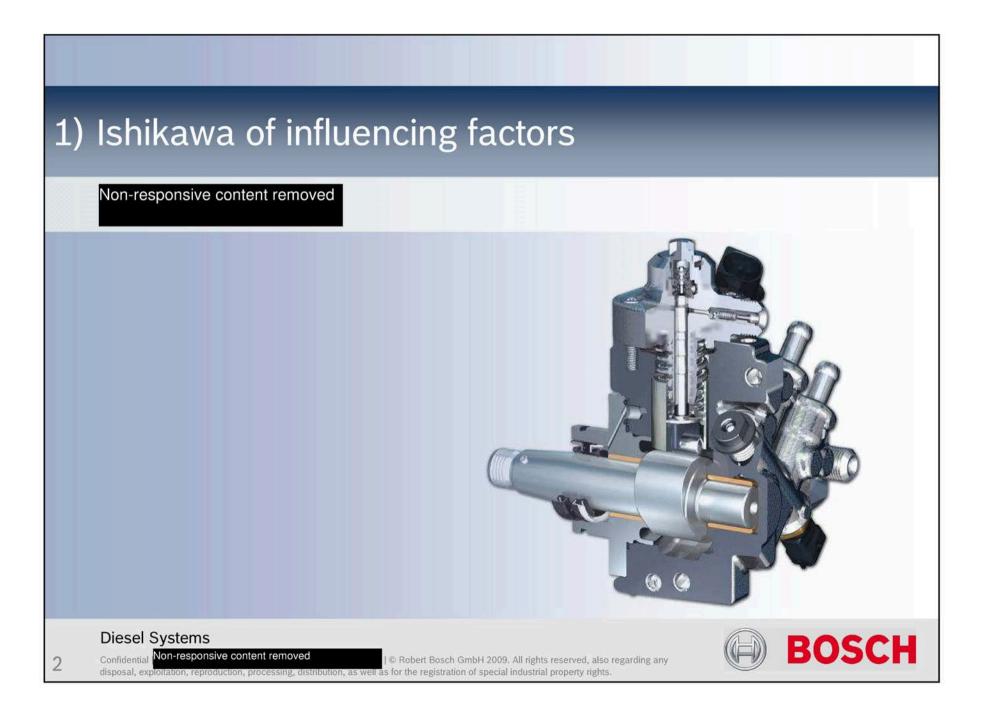
Is fuel from vehicles being adulterated en-route? (random sample after delivery)

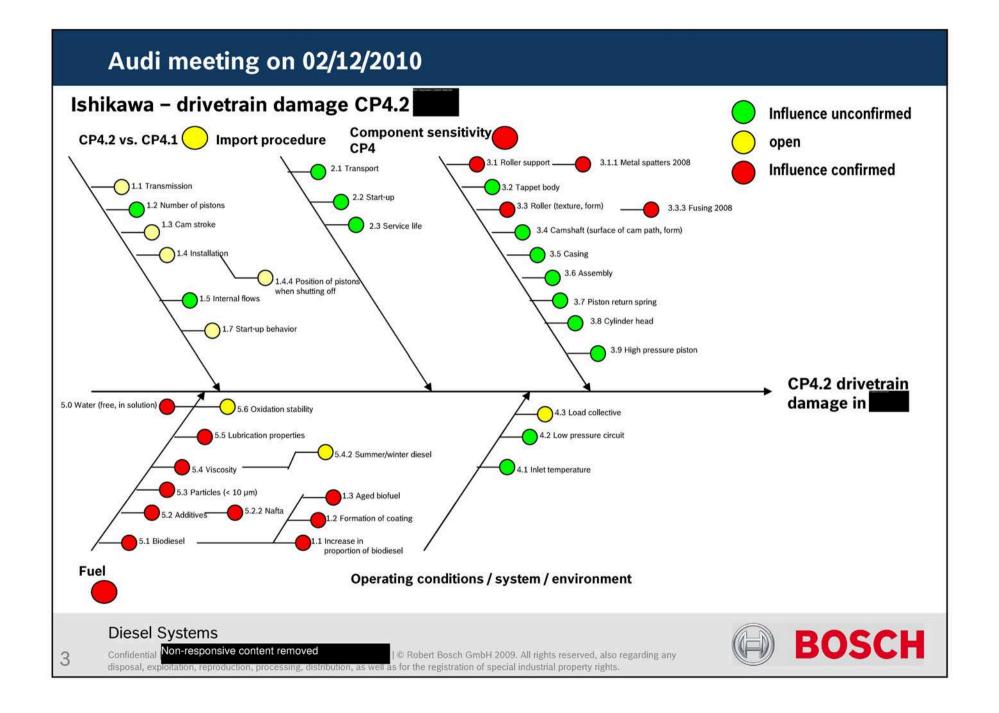

10/06/2008

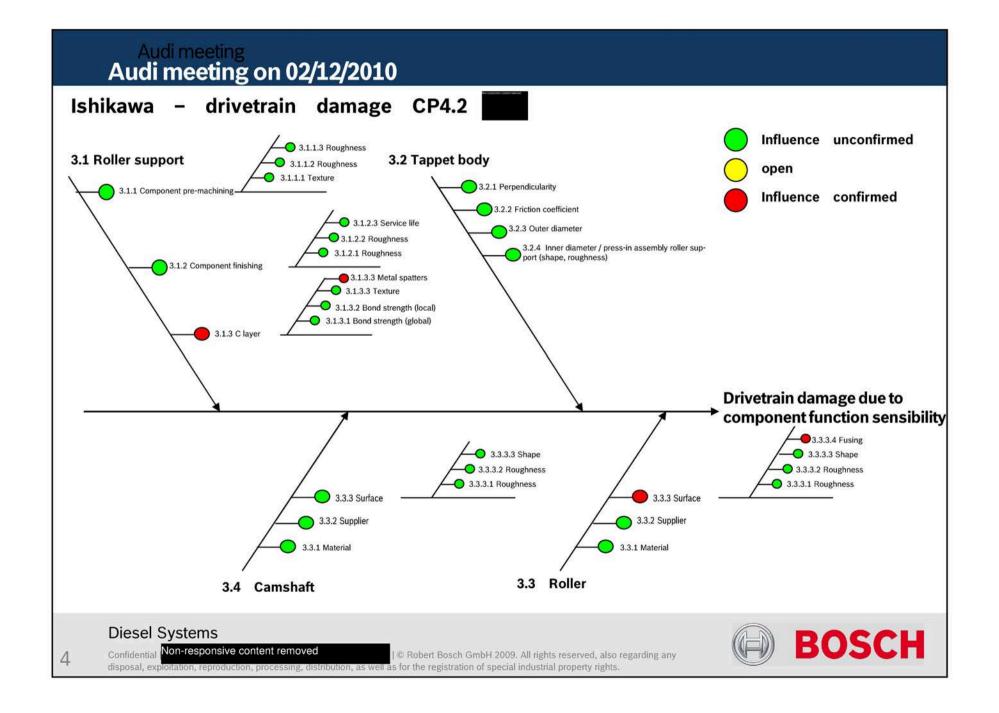


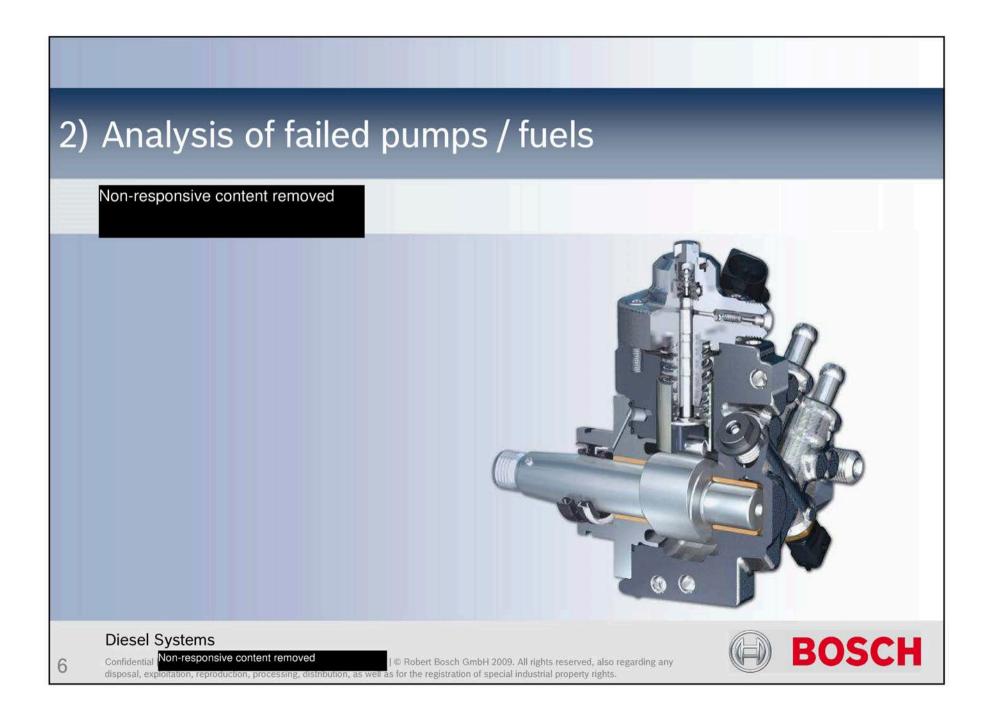
Audi meeting on 02/12/2010

Non-responsive content removed


- Ishikawa of influencing factors
- Analysis of failed pumps / fuels
- Component sensitivity
- Good pumps
- Hypothesis
- Anti-wear package 1
- Proof of robustness: Stribeck curves
- Assessment of measures







Audi meeting on 02/12/2010

Summary of areas of action from Ishikawa:

- 1. Fuel influence
- 2. Component sensitivity: Metal spatters / fusing
- 3. Differences between CP4.2 CP4.1 in application and design

Audi meeting on 02/12/2010

Determination of causes for failure focus

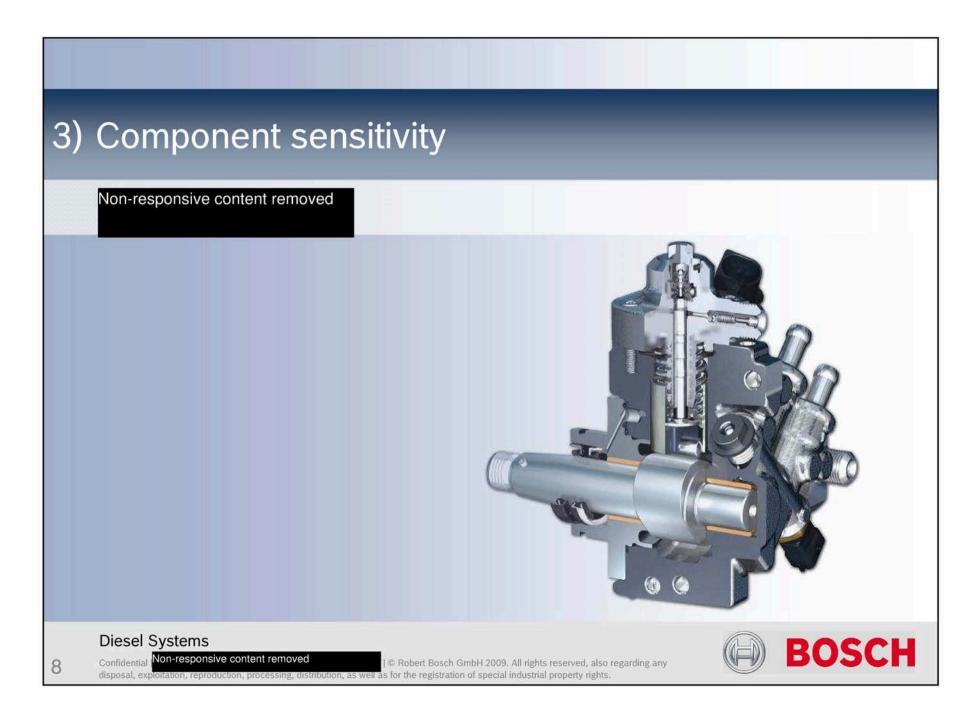
Analysis of field pumps and fuel samples from

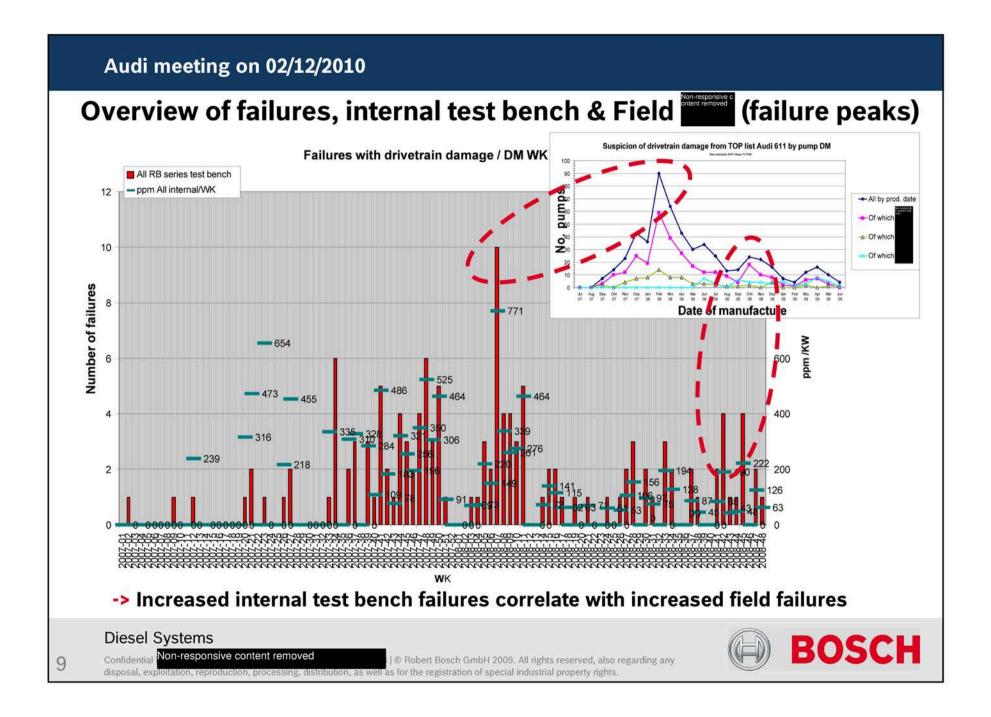
- **FAME** deposits
- Corrosion indicators, evidence of water
- Free water in fuel sample
- Cellulose residue, algae, glycerin
- Heavy wear of shaft seal
- Good pumps with preliminary damage -

11 of 54 pumps

45 of 54 pumps

4 of 24 samples


9 of 24 pumps

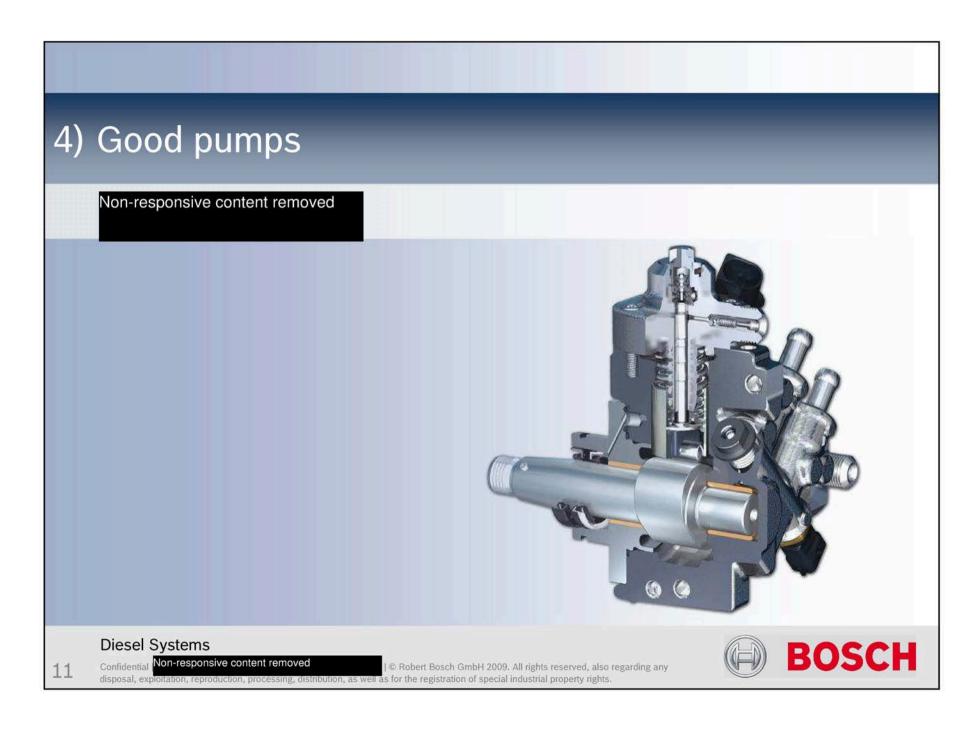

17 of 17 pumps

6 of 13 pumps

Audi meeting on 02/12/2010

Component sensitivity

1. Metal spatters in roller support C3 coating


Metal spatters significantly reduced through optimization of plants 5/2008 Sensitivity to small metal spatters with EN590/ BDF570 verified from 5/2008.

2. Roller with fusing

To select rollers with fusing, the straightedge test was introduced in 5/2008.

The conversion of the roller edge end to C2 in 5/2009 eliminated the fusing.

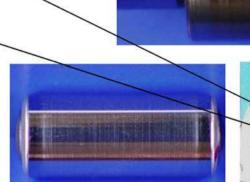
Audi meeting on 02/12/2010

TF AUDI Good pump (2009-CP4_0685)

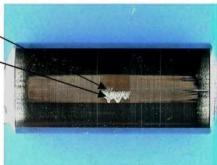
5,125 km (no failure)

Summary analysis results

- → Transfer of material from roller to cam
- → Braking flat from non-starter

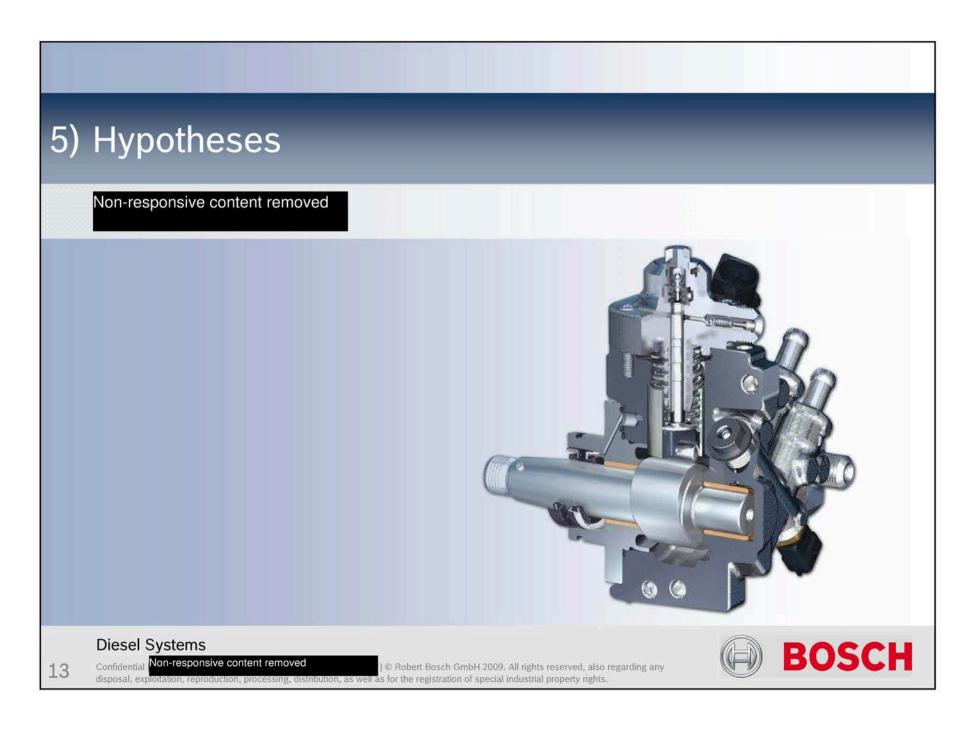

Interpretation:

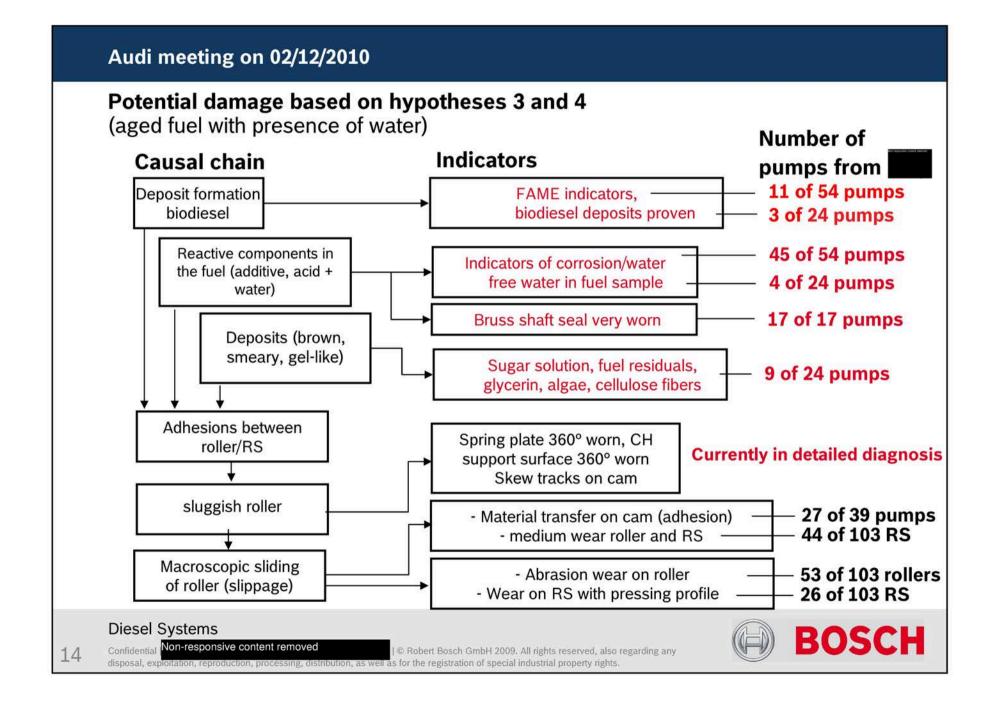
Roll does not start when engine is started (sluggish)


6 of 13 OK pumps from have the same symptoms.

Preliminary damage does not necessarily result in failure (failure primarily due to continued driving with poor fuel).

Experience from initial reappear tests.


Right roller


Diesel Systems

Audi meeting on 02/12/2010

Differences between CP4.2 and CP4.1

Hypotheses: Based on poor start-up of the pump (analysis of good pumps), the following hypotheses for the differences can be examined:

- Different start/pressure build up speed between 4-cylinder and 6-cylinder engine -> start-up worse with poor-quality fuels
- 2. Different position of roller on cam when shutting down engine. Mounting situation of pump on 4/6-cylinder engine
- 3. Belt tension during pump start-up (pre-tension)
- 4. Different flow patterns in pump interior (no influence)

Further work:

High-speed camera & start-up examinations with poor quality fuel 2/26/2010 Damage case with stopped (seized) roller can be reproduced with reappear test and Arctic Diesel.

Audi meeting on 02/12/2010

Anti-wear package 1 (task; features)

Assignment

Increase robustness of drivetrain by increasing the height of the lubricating film between roller support bore and roller.

Features of anti-wear package 1

- Reduction of roller support roughness in combination with change to C2 layer on roller support.
- Reduction of roller play by shifting average tolerance and tolerance range of roller support bore.

Results from simulation: Increase in robustness of ~ 50%*

(*compared to today's borderline tolerances)

Further work: Verification & RP1

by WK8

Audi meeting on 02/12/2010

Introduction of anti-wear package 1 in current series

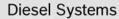
Status

Basic test of C2.1 layer incl. release for 3 customers with EN590 & ASTM975 (US fuel) available. No engine start/stop test for ASTM975. Verification with poorly lubricating fuel (kerosene, Arctic, aged biodiesel, ...) started.

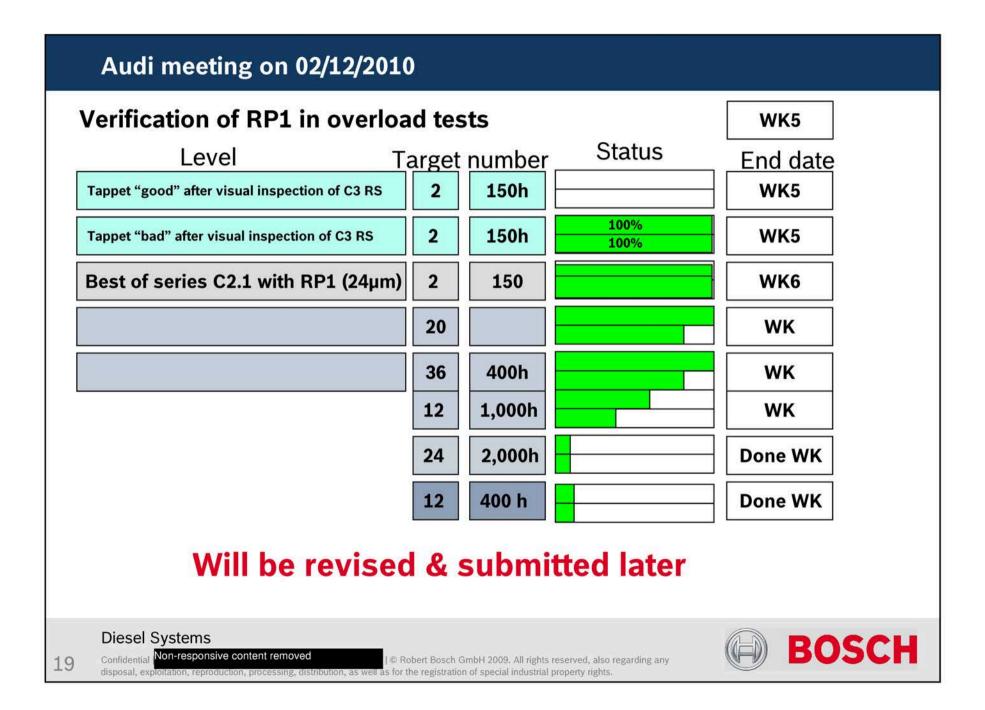
Open items

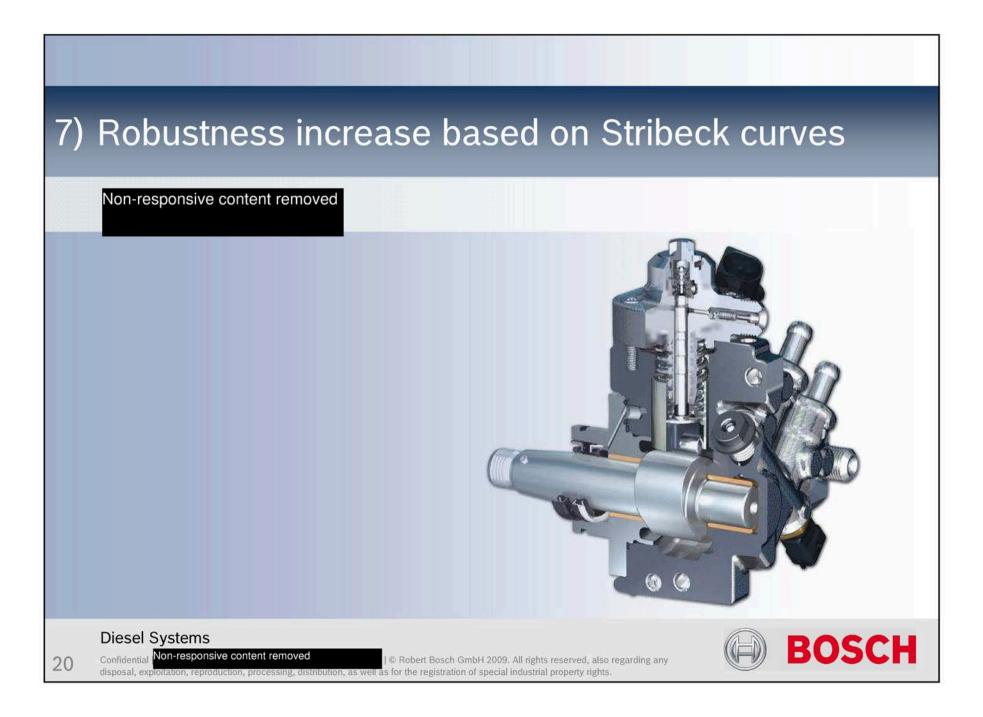
Verification of reduced play

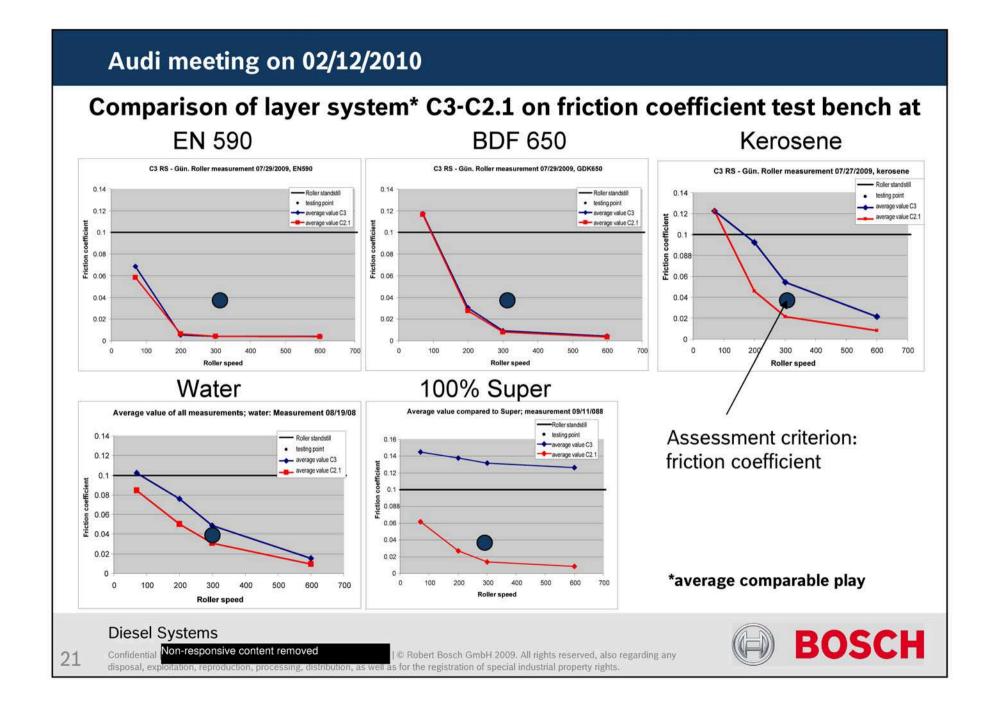
Risk assessment with DRBFMpositive

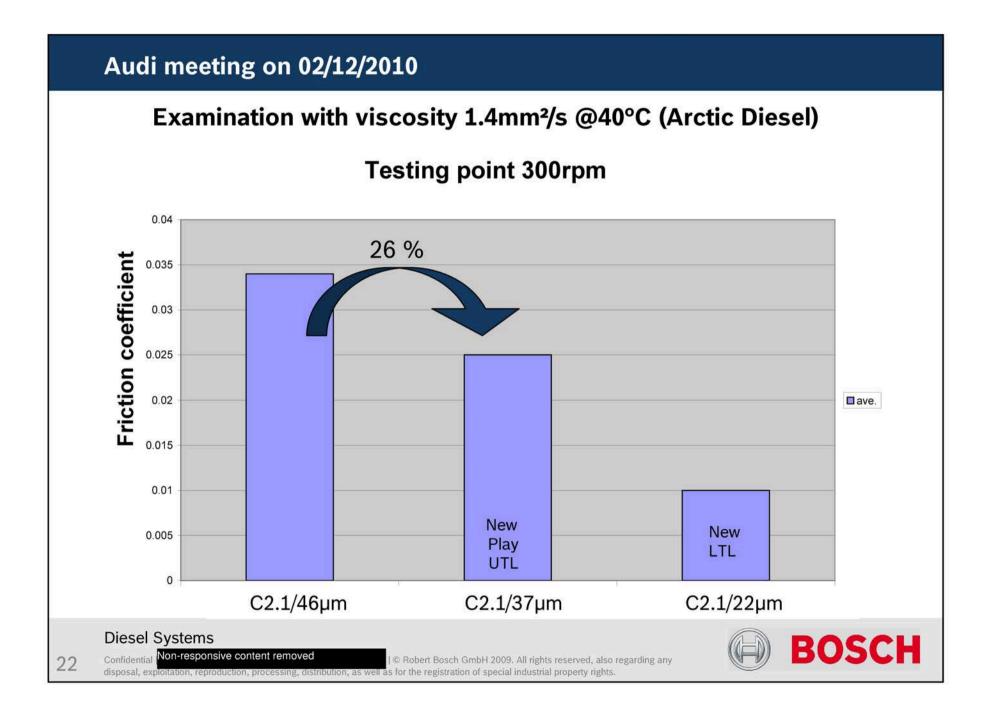

Borderline part provision

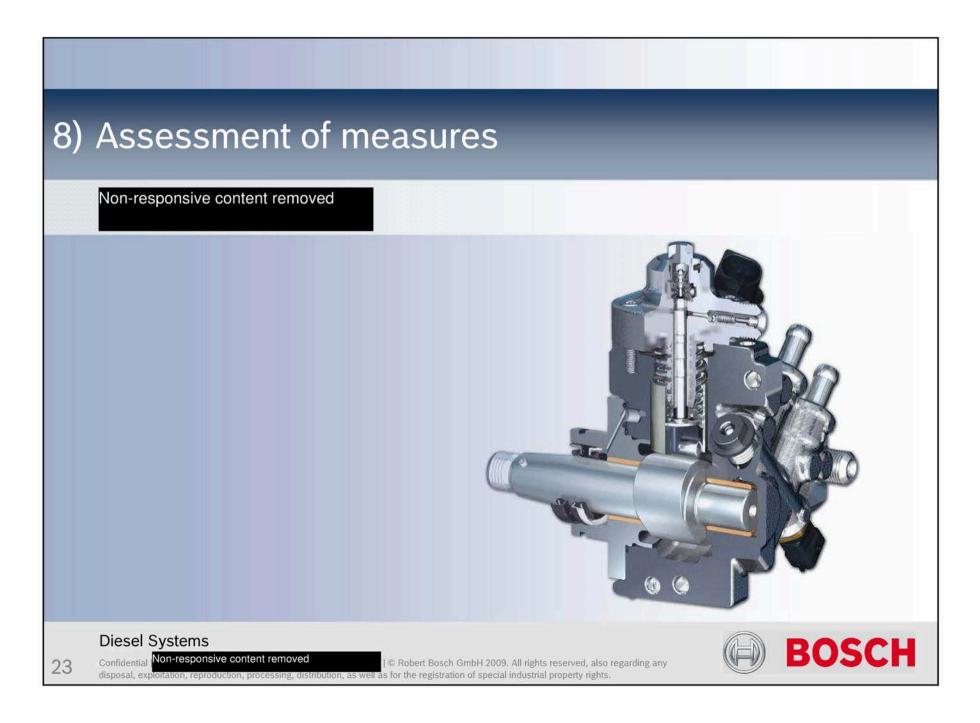
Functional & endurance runs

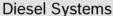

done


done


see schedule





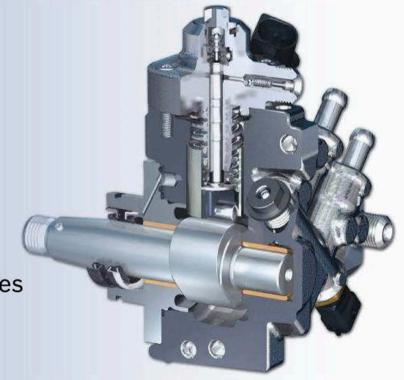

Audi meeting on 02/12/2010

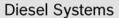
Effectiveness of robustness system:

Fuel quality	Problem	Series production	RP1	LLPx*	Water separator
EN590 / BDF520		+**	++**	++	
BDF650	Lubricity	(+)**	+**	+	
Kerosene	Viscosity	-	(+)	+	
Aged fuel	Gumming Lubricity	-	(-)	+*	
Water > 200ppm	Viscosity Lubricity Corrosion	1275 1137		1	+

Dependent on examination of differences between Cp4.2 and CP4.1, as well as results of *LLPx: FCF and WCF test with RP1. Definition of measures in the next 8 weeks.

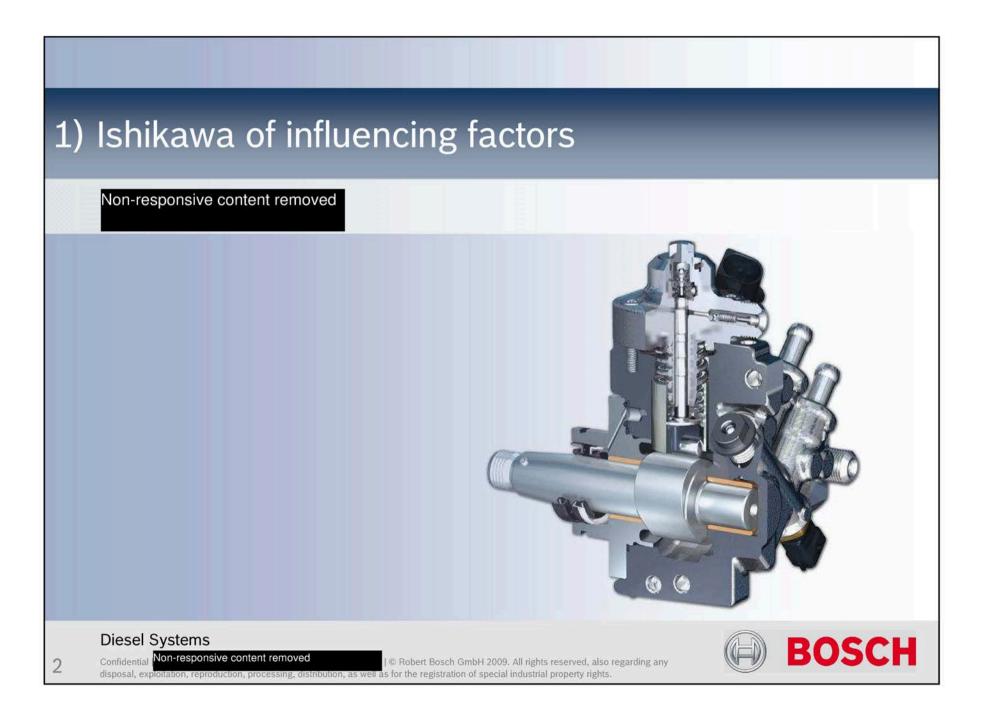
** with C coated piston (USA)

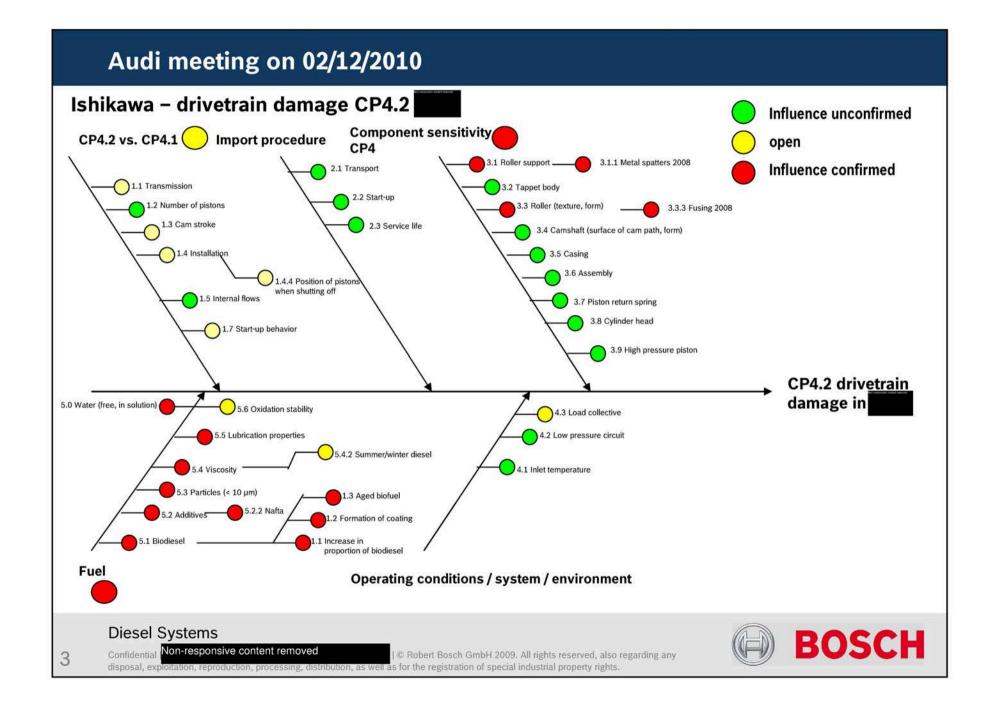


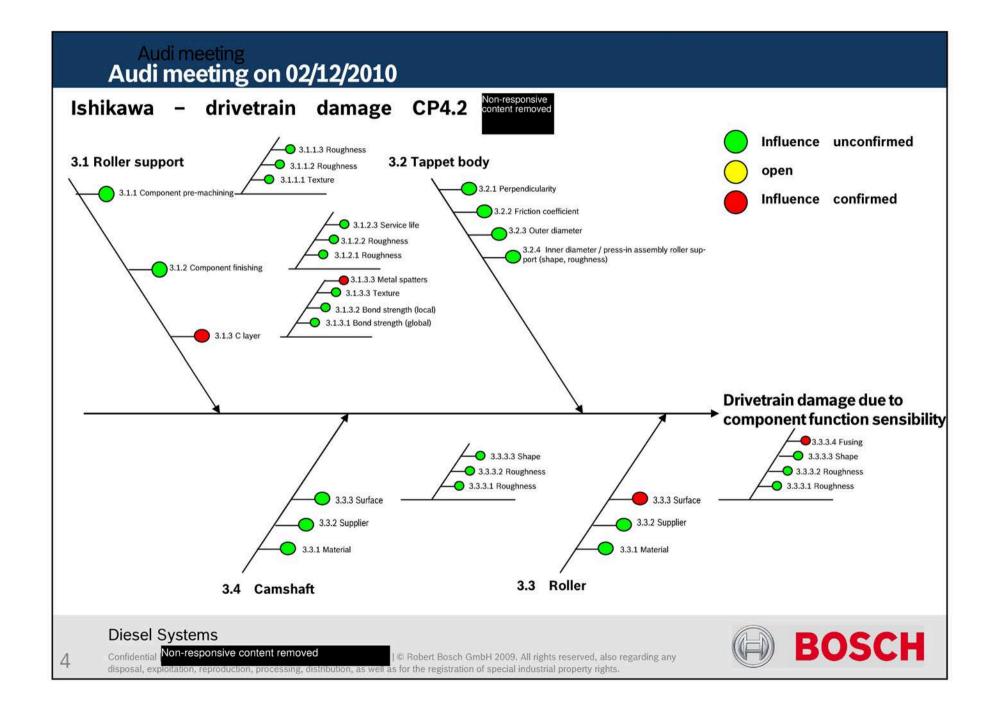


Audi meeting on 02/12/2010

Non-responsive content removed


- Ishikawa of influencing factors
- Analysis of failed pumps / fuels
- Component sensitivity
- Good pumps
- Hypothesis
- Anti-wear package 1
- Proof of robustness: Stribeck curves
- Assessment of measures







Audi meeting on 02/12/2010

Summary of areas of action from Ishikawa:

- 1. Fuel influence
- 2. Component sensitivity: Metal spatters / fusing
- 3. Differences between CP4.2 CP4.1 in application and design

Audi meeting on 02/12/2010

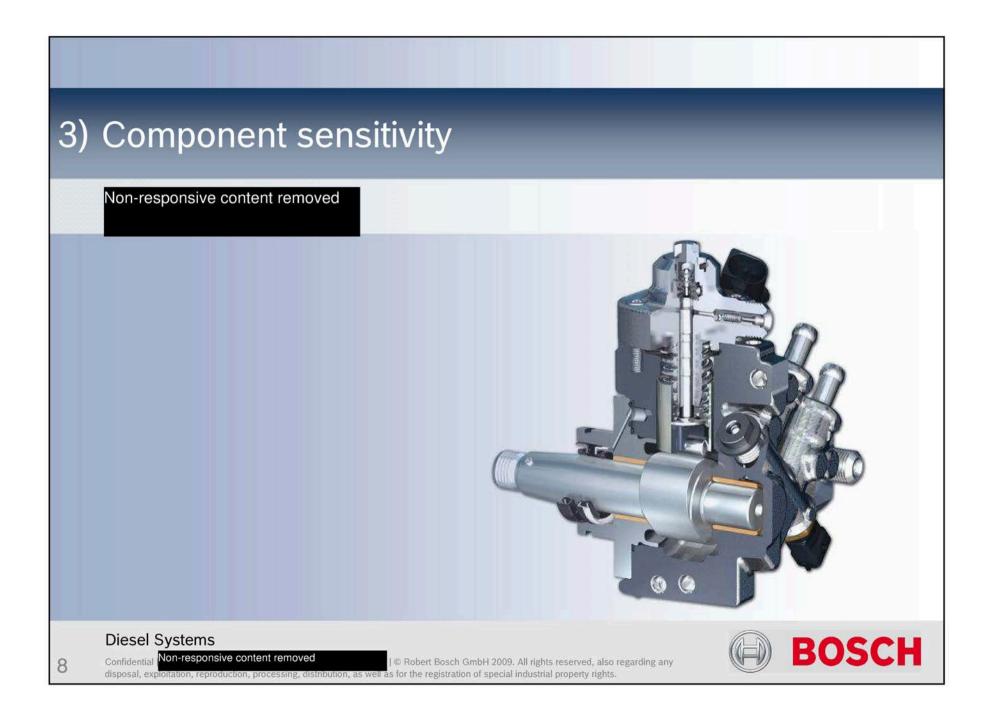
Determination of causes for failure focus ontent removed

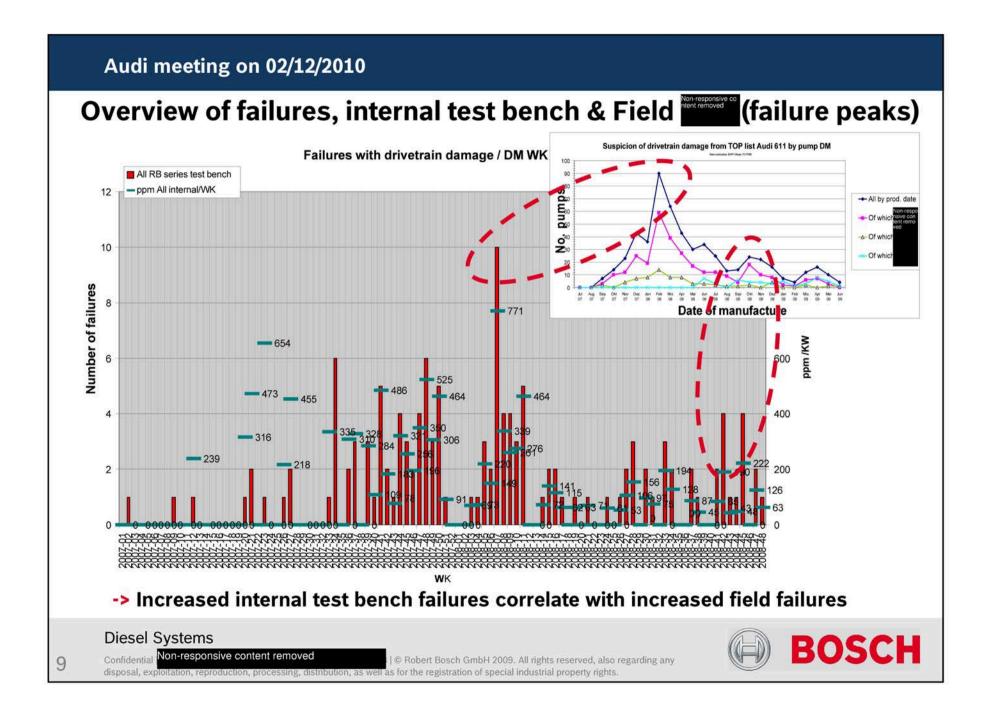
Analysis of field pumps and fuel samples from content removed

- FAME deposits
- Corrosion indicators, evidence of water
- Free water in fuel sample
- Cellulose residue, algae, glycerin
- Heavy wear of shaft seal
- Good pumps with preliminary damage -

11 of 54 pumps

45 of 54 pumps


4 of 24 samples


9 of 24 pumps

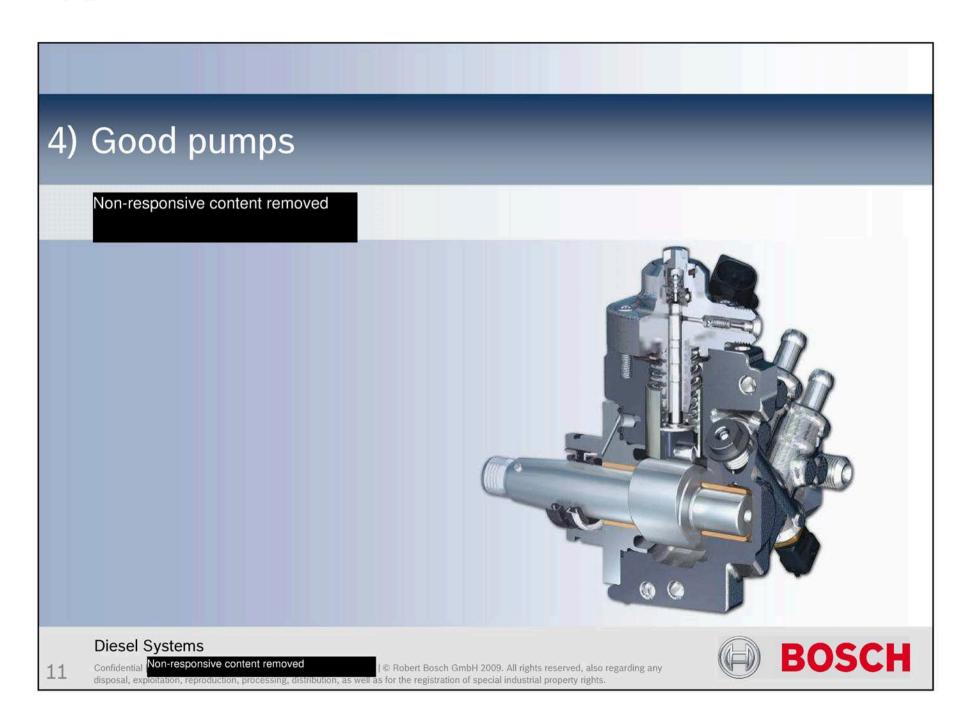
17 of 17 pumps

6 of 13 pumps

Audi meeting on 02/12/2010

Component sensitivity

1. Metal spatters in roller support C3 coating


Metal spatters significantly reduced through optimization of plants 5/2008 Sensitivity to small metal spatters with EN590/ BDF570 verified from 5/2008.

2. Roller with fusing

To select rollers with fusing, the straightedge test was introduced in 5/2008.

The conversion of the roller edge end to C2 in 5/2009 eliminated the fusing.

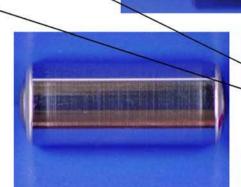
Audi meeting on 02/12/2010

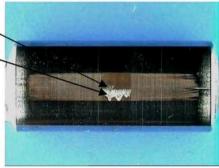
TF AUDI Good pump (2009-CP4_0685)

5,125 km (no failure)

Summary analysis results

- → Transfer of material from roller to cam
- → Braking flat from non-starter

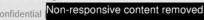



Roll does not start when engine is started (sluggish)

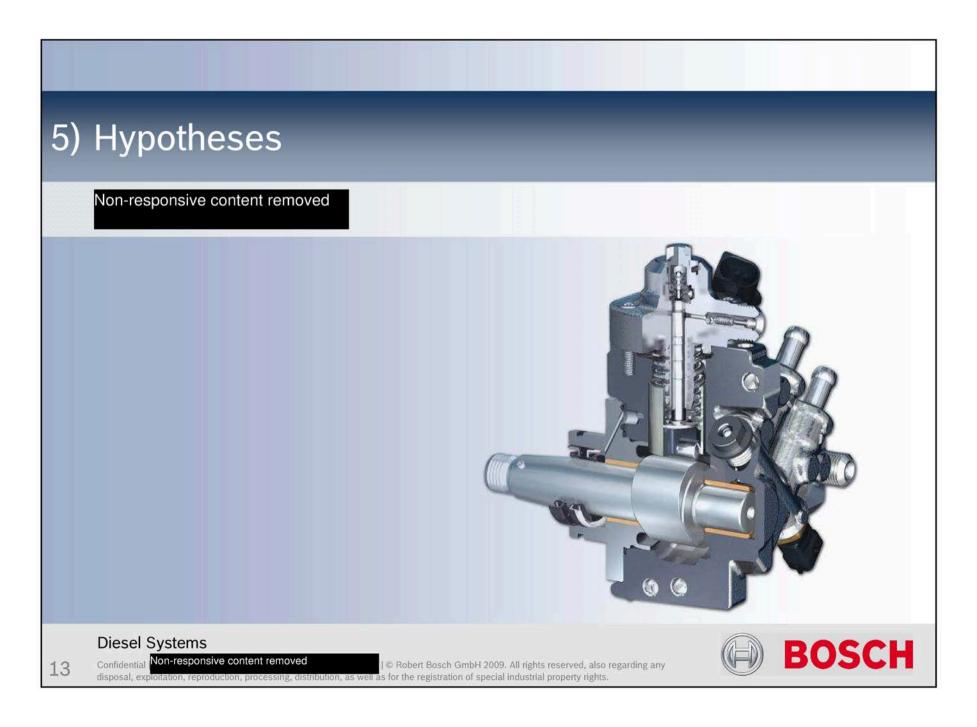
6 of 13 OK pumps from have the same symptoms.

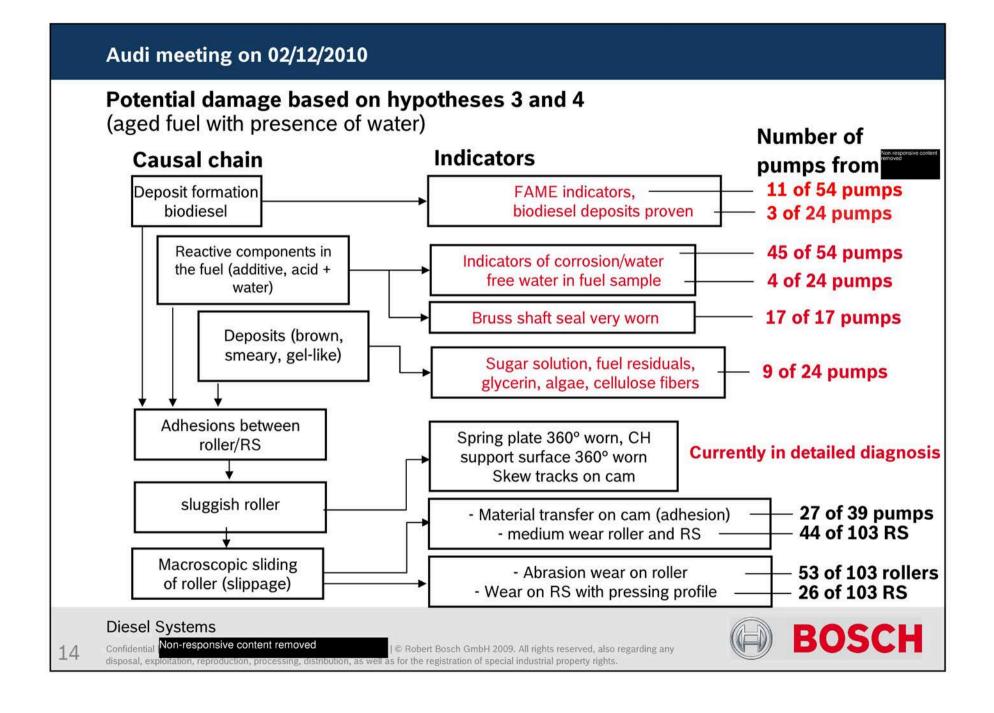
Preliminary damage does not necessarily result in failure (failure primarily due to continued driving with poor fuel).

Experience from initial reappear tests.



Left roller


Right roller


Diesel Systems

Audi meeting on 02/12/2010

Differences between CP4.2 and CP4.1

Hypotheses: Based on poor start-up of the pump (analysis of good pumps), the following hypotheses for the differences can be examined:

- Different start/pressure build up speed between 4-cylinder and 6-cylinder engine -> start-up worse with poor-quality fuels
- 2. Different position of roller on cam when shutting down engine. Mounting situation of pump on 4/6-cylinder engine
- 3. Belt tension during pump start-up (pre-tension)
- 4. Different flow patterns in pump interior (no influence)

Further work:

High-speed camera & start-up examinations with poor quality fuel 2/26/2010 Damage case with stopped (seized) roller can be reproduced with reappear test and Arctic Diesel.

Audi meeting on 02/12/2010

Anti-wear package 1 (task; features)

Assignment

Increase robustness of drivetrain by increasing the height of the lubricating film between roller support bore and roller.

Features of anti-wear package 1

- Reduction of roller support roughness in combination with change to C2 layer on roller support.
- Reduction of roller play by shifting average tolerance and tolerance range of roller support bore.

Results from simulation: Increase in robustness of ~ 50%*

(*compared to today's borderline tolerances)

Further work: Verification & RP1

by WK8

Audi meeting on 02/12/2010

Introduction of anti-wear package 1 in current series

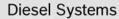
Status

Basic test of C2.1 layer incl. release for 3 customers with EN590 & ASTM975 (US fuel) available. No engine start/stop test for ASTM975. Verification with poorly lubricating fuel (kerosene, Arctic, aged biodiesel, ...) started.

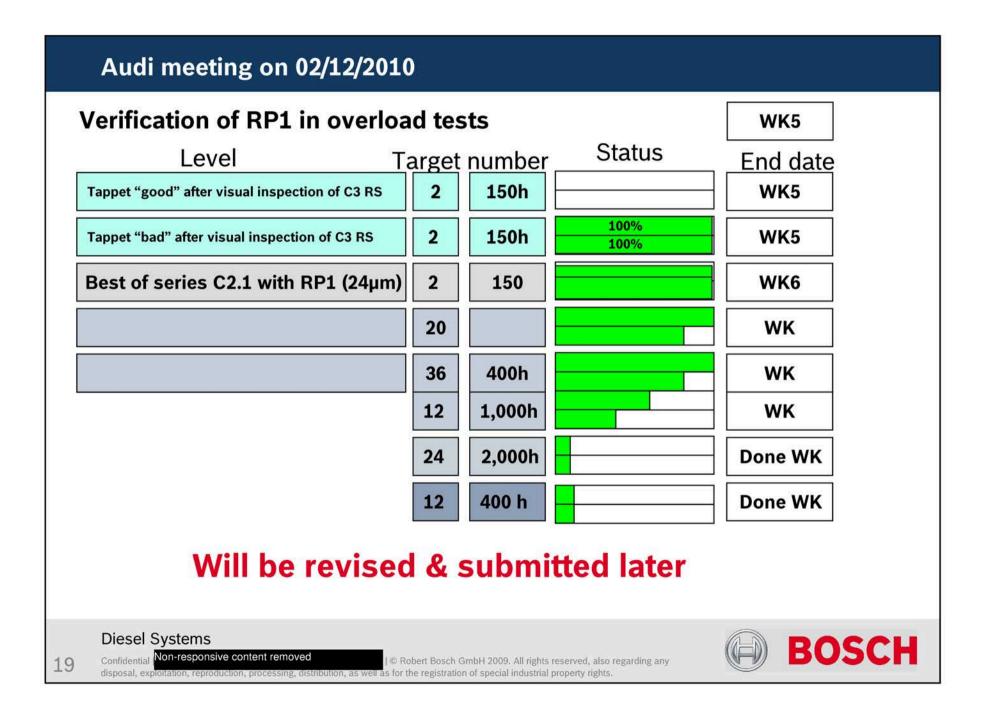
Open items

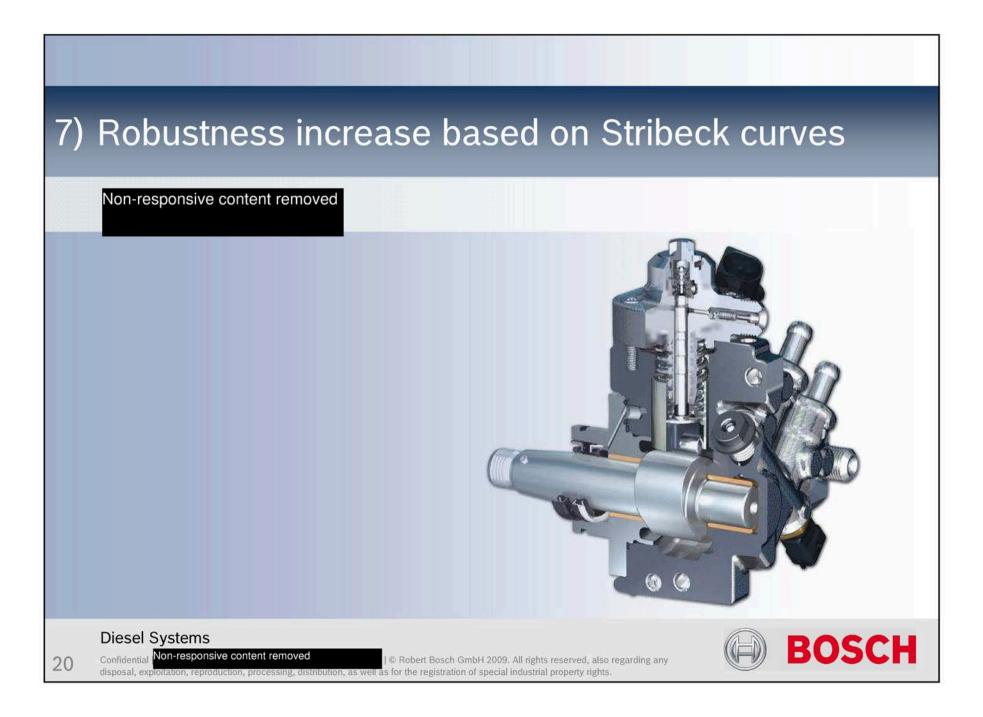
Verification of reduced play

Risk assessment with DRBFMpositive

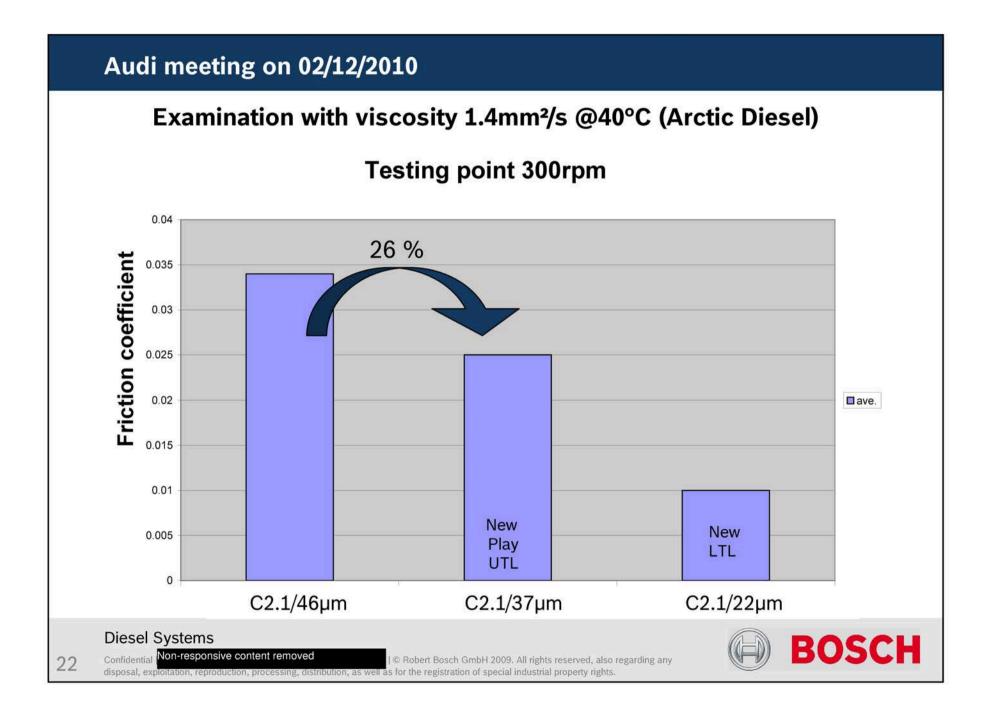

Borderline part provision

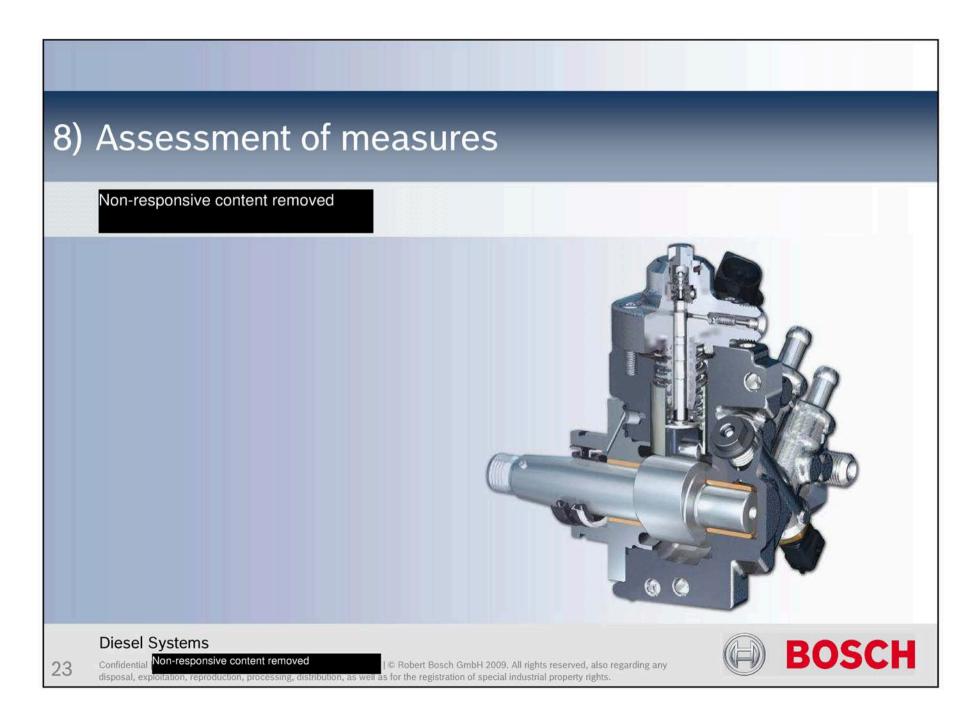
Functional & endurance runs

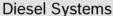

done


done

see schedule






Audi meeting on 02/12/2010

Effectiveness of robustness system:

Fuel quality	Problem	Series production	RP1	LLPx*	Water separator
EN590 / BDF520		+**	++**	++	
BDF650	Lubricity	(+)**	+**	+	
Kerosene	Viscosity	<u>~</u>	(+)	+	
Aged fuel	Gumming Lubricity	-	(-)	+*	
Water > 200ppm	Viscosity Lubricity Corrosion		*	£	+

*LLPx: Dependent on examination of differences between Cp4.2 and CP4.1, as well as results of FCF and WCF test with RP1. Definition of measures in the next 8 weeks.

** with C coated piston (USA)

Non-responsive content removed **Minutes** Recipient **Participant** Audi:Non-responsive content removed for info Host Non-responsive content removed **Participants** Line minute Organis. , 02.12.2010 Audi Date/location Top meeting high-pressure fuel pump CP4.2 Topic

- 1. For an executive discussion in (WK9/10) with
 - Presentation of how the anti-wear package 1 (RP1) works
 - Presentation of the anti-wear package 2 (RP2 or LLPx), including schedule
- 2. Proof of function RP2 (LLPx) WK14/10:
 - RP2 is required against seizing and sticking of the roller through the fuel components.
 - Objective: Robustness against the customary fluctuations in fuel quality
- 3. RP1:
 - Decision: After the successful testing, RP1 will be introduced for all V-Diesels Conclusion of tests E WK08/10
 - Bosch reports extra costs of
 - Position Audi:
 - Cost-neutral series introduction RP1
 - A refusal of warranty for fuel, which doesn't meet the EN580, will not be accepted.
 - Position Bosch:
 - The RP1 introduction doesn't include the market approval for critical markets ; approval by Bosch according to the technical customer documentation (TCD).
 - Through the introduction of RP1 the acceptable water content of <200 ppm is not increased
 - The clarification of the extra costs and the warranty takes place following the series introduction
- 4. Comparison CP4.1 / CP4.2
 - In comparison with CP4.1, CP4.2 shows higher failure rates. The reasons must be determined as soon as possible. The results must be included in RP2
- Water separator
 - Audi develops a high-performance water separator, including sensor
 - No longer used in 2010

Non-responsive content removed

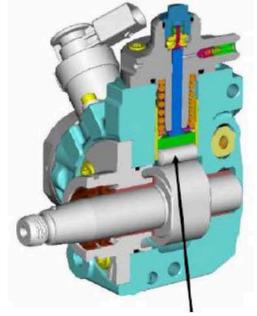
Appendices: Presentations by Audi and Bosch

Vorsprung durch Technik

Drivetrain damage, high-pressure diesel fuel pump CP4.2 TOP meeting between Bosch and Audi on 02/12/2010 in Non-responsive content removed

Drivetrain damage, high-pressure diesel fuel pump CP4.2

The "sensitive heart" of the pump is the **drivetrain** with:


- Roller
- Roller support
- · Twin camshaft

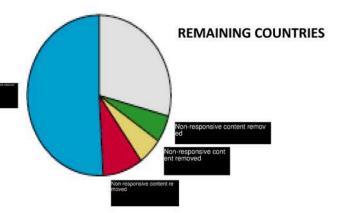
The <u>roller</u> with a very smooth surface must over the <u>entire service life</u> and <u>at all</u> <u>operating conditions:</u>

- glide smoothly in the C coated roller support
- <u>roll</u> over a very smooth cam without slippage

This is not achieved in all situations, **drivetrain damage** can occur in the case of **sluggishness** of the roller in the roller support due to production and country-specific fuel impacts.

The field failure rate for the CP4.2 (V6-TDI) is several times greater than that of the CP4.1 (R4-CR).

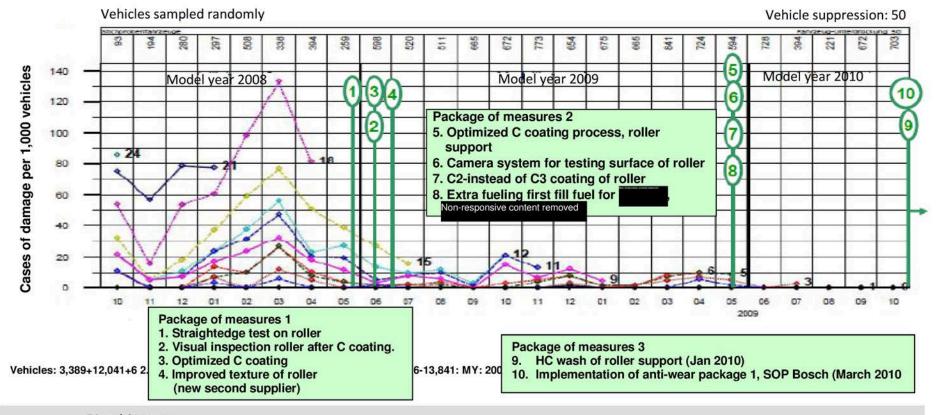
Roller


Current field situation:

V6-TDI Audi – worldwide 1035 settlements/526 of which...

- MY08 632 units / 338 = critical production period
- MY09 377 units / 180 = after package of measures 1 (see slide 3)
- MY10 26 units / 8 = after package of measures 2 (see slide 3)

V8-TDI — 1 case Non-responsive content removed


V12-TDI — 2 cases in Non-responsive content removed

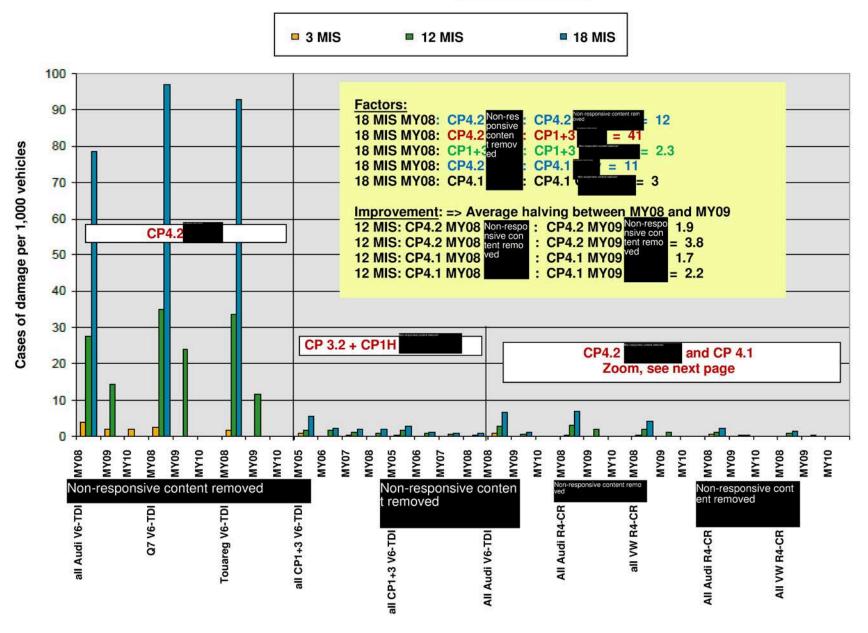
AUDI-CP4 field situation content removed

Status: 02.03.2010

Audi,*,Market: CP4.2 AQUA: active quality analysis Confidential Status as on 12/09-01.16.10 08:43 AM MY 2008 - 2011, offset : all (Max : 2) Without PR - numbers Source/User Non-responsive content remo Customer no. / Groups: High-pressure fuel pump CNR 2374 CAMA CAMB CANB CANC CAND CASA CASB CASC CASD CATA CCLA CCMA CCWA **CCWB** CDYA **CDYB** CDYC CGK CAMD CANA CATB Replac MY MIS 0 MIS 1 MIS 3 MIS 5 MIS 6 MIS 9 **MIS 11 MIS 12 MIS 15 MIS 16** MIS 21 **MIS 24** MY BD **SA10 SA17** ement 2008 0.0 3.9 18.0 23.6 27.8 103.2 2008 100.0% 81.3% 75.6% 1.7 9.0 10.3 44.5 78.5 119.7 14.2% 2009 0.1 0.8 1.9 3.8 4.4 7.8 11.7 14.3 23.0 2009 97.2% 79.4% 13.1% 0.0 2.1 3.1 50.0% 50.0% 2010 0.0 -3.1 2010 100.0% Diff% -100 -100 8.53 16.22 29.13 MECFAULT MAJOR

Diesel Systems

Confidential | 102.03.2010 | © Robert Bosch Gmbh 2008. All rights reserved, also regarding any disposal Reproduction, editing, distributions as well as in the event of applications for industrial property rights



11

Drivetrain damage, high-pressure diesel fuel pump CP4.2

Comparison of damage case rates of Audi-VW Non-responsive content removed / V6-TDI to R4 CR/CP4 to CP1+3

Drivetrain damage, high-pressure diesel fuel pump CP4.2

Comparison of damage case rates of Audi-VW Mon-responsive content re V6-TDI to R4 R4-CR (without V6 3 MIS 12 MIS 18 MIS 8 CP3.2 + and CP1H **CP4.2** and CP4.1 Audi + VW 7 6 Cases of damage per 1,000 vehicles 5 3 2 MY08 MY08 MY08 MY08 MY10 MY10 MY07 MY10 all CP1+3 V6-TDI All Audi R4-CR All Audi V6-TD

Drivetrain damage, high-pressure diesel fuel pump CP4.2

Anti-wear package 1 (RP1):

- C2 coating on roller support instead of C3 for better surface roughness (Rv = 0.8 instead of 1.3 μm)
- C2 coating also prevents metal splashes
- Play reduction between roller / roller support by offsetting the tolerance band (18 40 μm instead of 24 46)
- Bosch has specified extra costs of no development costs.

Brief test and efficiency of RP1:

- Basic testing of C2 coating on account of use with competitors in 2010 has been concluded
- Brief test with Arctic diesel (was originally kerosene) → poor lubrication, lower viscosity fuel up to WK 08/10 → Objective: Establish potential for improvement RP1
- Efficiency statement: Potential for improvement cannot be evaluated at present.
- no measure in view of new main error hypothesis in regarding "sluggishness due to the sticking" of the roller

Readiness for production and introduction date:

- Readiness for production Bosch from WK 09/10 ensured
- Planned approval by Development + QA Bosch + Audi start of WK 09/10
- Production deliveries Bosch from WK 10/10 for comprehensive implementation in all V-diesel in the Group
- First 400 parts initially planned for customer service implementation

Drivetrain damage, high-pressure diesel fuel pump CP4.2

- Long term testing RP1 quantitative potential for improvement (e.g. in ER hours, etc.)
 - Worst-case fuel VW Group / Bosch is defined → Testing from WK 12/10
 - "Aged" diesel with biodiesel 20% (B20) →1. Test running since WK 05/10
- Anti-wear package 2 (RP2) is still open
 - Possible objective: Avoid turned tappets, sticking or differences between the CP4.2 and CP4.1
 - Engine measurements R4 still not concluded → Deadline to be clarified
 - <u>critical</u>: may be necessary for new design and construction elements (no anti-turning lock today).
- Fallback solution for high-pressure fuel pump CP1H or CP3 (1,650 bar) for EU4 markets:
 - → Requirement of QA middle 2010 in the case of insufficient efficiency of RP1 + RP2
 - → Field situation, (MIS18 / MY08): CP4.2 factor 41 greater than CP3+1 !!!
 - → Implementation of CP1H or CP3 may have to be evaluated by N/EA-6 with regard to technical and timing factors.

Drivetrain damage, high-pressure diesel fuel pump CP4.2

- Requirement Bosch: →Introduction of water separator in the diesel filter
 - Water separator with extraction capability in the main failure models Q7 and Touareg right from the start in series production (→efficiency in view of Bosch recommendation must still be evaluated)
 - Currently no available water separating technology for horizontal diesel filters in the Audi B / C7 series
 - Diesel filter manufacturer, Bosch, does not provide a water separation system
 - FIAT (connoisseur of the indigenous market) provides a water separator with sensor system and in some cases display symbol in the instrument cluster

Non-responsive content removed		

Audi CP4 field situation

11.16.2010

Management summary

- → TOP Q meeting between RB and AUDI held on 10/28/2010. Worldwide failures in total of 2,635 Audi V6 TDI, 6 x V8-TDI and 12 x V12-TDI (CP4.2), distribution to countries, see page 7 For the development of the failure situation see page 6.
- Since vehicle production date. 06/2009 very few failures in Q7 and VW Touareg in but disproportionate increase in RP1 introduced since 04/2010, effectiveness in the field still not sufficient.

 RP2 introduced (temperature drop in the right roller support) since 10.29.2010, effectiveness in the field is still to be proven (initial failure in on 11.11.10).
- Results of the findings of failures in show extensive abrasive wear of the roller and camshaft, which is a typical indication for use of low-viscosity fuels (e.g. kerosene).
- → Use of on-site team in since 11.08.2010 for the systematic analysis of the causes of failure with the support of RB. Results see Back-up.

Audi CP4 field situation

11.16.2010

ln

Management summary

- USA testing
 - 2 failures of the Touareg NF Bin5 in Q-AL, 1 vehicle with previously damaged HPP
- Analysis
 - Both failures after 10,000 km with Master 04 (since 09.01.2010)
 (Q7 with same data as Master 05 and all Touaregs with Master 03 no striking features)
 - Fuel temperature in inflow of HPP: driving mode, about 50 °C on average

in the post heating max. temperature peaks up to about 100 ° C.

- Presupply volume of tank EFP at engine start:
 - Master 03: Maximum delivery from start request (200 I / h) until uncritical inflow temperatures are reached
 - Master 04: requirement-based pumping (130 l/h) due to CO2 reduction and coagulation
- Hypothesis: At hot start, high-pressure fuel pump is not sufficiently flushed with fresh fuel during a hot start with poor quality fuel (low boiling point, low viscosity).

Measures

- Master 05 with maximum delivery when engine is started and at fuel temperature >70°C (same as Q7)
- Bin5 dataset changed for market launch
- EU5/EU4 changed for WK 45

Diesel Systems

Audi CP4 field situation

11.16.2010

Management summary

Problem:

At engine start

- → mixed friction between the roller and roller support with poor quality fuel leads to delayed start-up of the roller (braking flats)
- → which in turn leads to a failure of the HPP

Other measures above and beyond TCD may be introduced. Optimization of cooling and lubrication of high-pressure fuel pump when starting the engine.

- Control of the EFP with terminal 15
- EFP control in after run with hot fuel temperatures for cooling the CP4
- EFP control through door contact (also for 6 bar tank system)

Dates:

- → SW specification 2 bar tank system by the end of WK 45

 Achievement of the field activities in Non-responsive content removed by the end of 2010/start of 2011 is questionable.
- → SW specification 6 bar tank system to WK 47, EA approval WK 06/2011

Audi CP4 field situation

11.16.2010

Management summary

- Pumps taken from the end of the line in the removed and pre-existing damage. Pumps in removed were also slightly discolored. Vehicle measurements will take place shortly in removed removed were also slightly discolored.
- Pumps removed when the engines were delivered to the had no build-up of deposits or other damage.

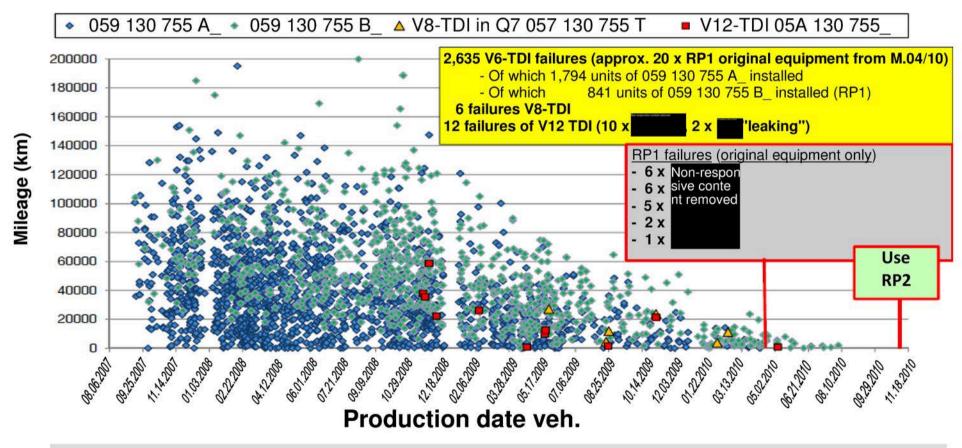
 Therefore, the pre-existing damage is caused most likely by the fuel and implementation process in hon-responsive content remarks and not in the engine plant in hon-responsive content remarks.
- → Production in A6 2.7l remain closed. New vehicle project Q7 3.0l EU4 is not approved. 102 Workshop complaints, 79 warranty settlements, including 8 x with RP1 of about 4,300 vehicles.
- → Further action: From each of 12 assembly lines in 8 car plants 5 pumps will be removed and analyzed (60 in all) In addition, joint analysis of the processes carried out on site in the plants. 25 of these pumps have already been delivered to Bosch.

Audi CP4 field situation

11.16.2010

Management summary

- Provisional delivery of 130 pumps (40 40 50 50 with RP2. So far, 40 units are mounted in and about 30 in Replacement in faulty vehicles in order to prove effectiveness in actual operation. First failure of RP2 on 11/11/2010 in approx. 2,000 km after installation. Vehicle checked in WK 46 by local Audi/Bosch team.
- It was suggested that risk should be shared for EU-4 markets until the end of testing. No agreement was reached in follow-up talks in September 2010 either.
- Negotiations on who would cover the costs of RP1/OV were held in September. No agreement reached. Bosch will cover the cost of RP2.
- Preventive measures are planned in the field (approx. 34,000 vehicles) for the markets of Non-responsive content removed until RP2 is launched. Audi already orders spare part pumps and fuel hoses, the first deliveries have been carried out.



Audi CP4 field situation

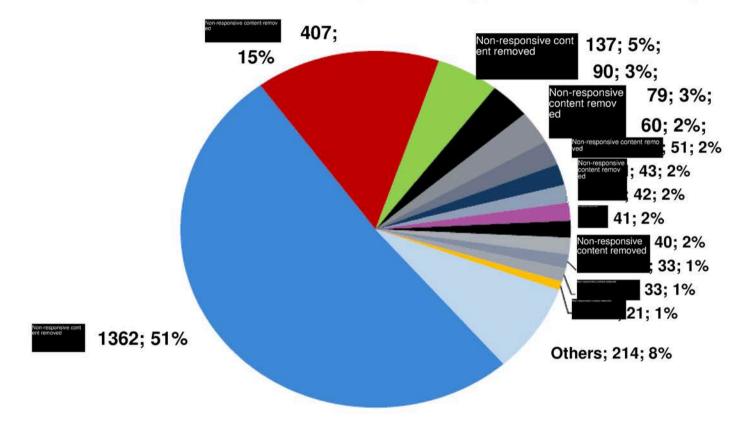
11/16/2010

All settlements of high-pressure fuel pumps V6-/V8-/V12-TDI Audi

(SAGA Status as on 11.16.2010)

Diesel Systems

| 11.16.2010 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, processing, distribution, as well as for the registration of special industrial property rights.

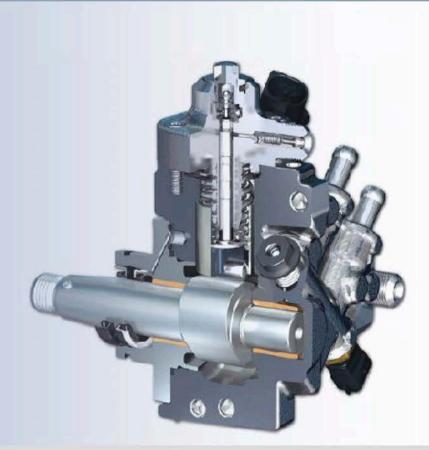


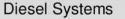
Audi CP4 field situation

11/16/2010

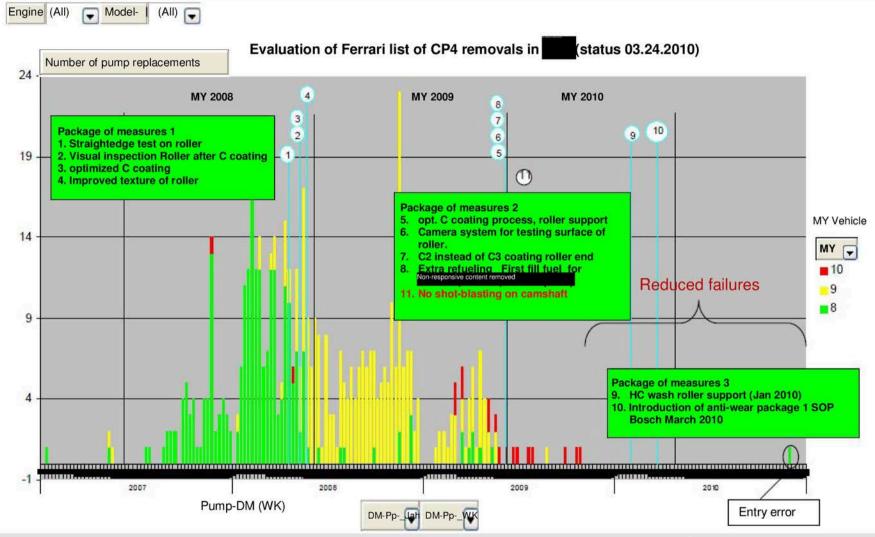
Field failures V6/V8/V12 TDI (Audi only) broken down by country

Diesel Systems


Initial results of field analysis of Non-responsive content removed


Preliminary conclusion:

- → No obvious errors of low-pressure fuel system, tank or fuels
 - Striking features:
 - Dust loading of outside tank
 - Particles in the tank
 - Report on fueling behavior of customers (Kerosene or gasoline admixture possible)
 - Fuel samples removed from 7 vehicles and 4 gas stations for analysis
 - Quality of the workshops and workshop processes vary
 - High-pressure fuel pumps are not mounted in an oriented manner when being replaced
 - High and low pressure components are partly not replaced
 - But makes repeat repairs plausible at the most, not the first-time failures
 - In few instances, suspicion of electronic manipulation
 - Flash counter implausible
 - Tuning protection bracket removed
 - Electronic theft protection upgraded with a second main relay
- → So far, no obvious explanation for the large number of failures


Audi on 4.16.2010

Audi CP4 Task force INVERTE PAGE CONFIDENTIAL

EATI STERIUS TESSIC Force ENTIRE PAGE CONFIDENTIAL

Description of problem:

We have two different field problems requiring different measures

New findings

Mixed friction in roller support leads to high local temperatures. The mixed friction can be caused by the fuel quality, insufficient venting and poor lubrication.

Due to the high temperature, deposition products arise from additives in roller support which clamp the roller in the roller support at the start. (local ~140[°C])

CP4.1 from does not show the deposits (evaluation from failed pumps)

Overload test (arctic diesel, 2,300 bar, 90 °C, 600 rpm) show the same effect (This fuel has high levels of additives (see later slides)

CP4.2 clockwise shows pre-existing damages to the right roller support at 5 of 6 good pumps with deposits

Counter-clockwise rotating pumps are far less affected (8/12 cylinders)

Description of problem:

Non-responsive content removed

Due to fuels with low viscosity and / or lubricity, e.g. kerosene, water in fuel, Arctic diesel, ... the hydrodynamic lubricant film in roller supports is greatly reduced, which leads primarily to abrasive wear of the roller in the roller support, as the system roller / roller support runs for a long time under mixed friction. Good pumps from show no deposits, and for failed pumps nearly always abrasive wear instead of turned tappet

EATI STERIUS TESSIN Force ENTIRE PAGE CONFIDENTIAL

RP1 measures to increase the lubrication gap in the roller support at a lower viscosity and poorer lubricity (RP1 also lowers the temperature in the roller support; verification via Q old Arctic diesel test, with no C2 deposits such as CP4.1)

- Reduction in roughness in the roller support due to changeover to C2 coating
- Secure prevention of metal splashes
- Reduction of play between roller and roller support
- Reduction in roughness of roller
- Optimization of the edge taper on the roller (slender taper)

RP1 introduced in RB since WK 10; effective in Audi from WK 12

Effectiveness proven in individual parts Significant increase of the lubrication gap detected Statistical verification with in total of 12 pumps in Qalt (2,300 bar, 600 rpm, 90°C Arctic diesel)

EATI STERIUS TESTE ENTIRE PAGE CONFIDENTIAL

Summary from RP1 verification with additional 14 pumps:

The pumps with RP1 continue to show a significantly lower wear (rating difference 1.5 to 7) in the roller support (scale to 10) and very little hard deposits. (Rating difference 1.5 to 7)

Conclusion:

The RP1 package is effective against low viscosity / lubricity and reduces the temperature in the roller support such that Arctic diesel only brings in very little hard deposits from additives

The lubrication gap is increased by at least a factor of 2

Detail:

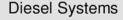
In the 14 endurance runs the fuel change intervals were changed from 100 hours to 200 hours, thereby, the fuel has a greater age than in the first endurance run results:

- The aged fuel leads to partial seizing of the tappet. and thus to failure of 4 pumps that would otherwise continue to run, Not field relevant.
- Stopping all ER in order to evaluate the wear at the end of WK14
- Result:

Old series: 6 pumps rating:

: 4 pumps rating: 1.5 RP1

- A roller support shows unilateral increase (not cleanly honed) (series is reviewed and measurement window adjusted)

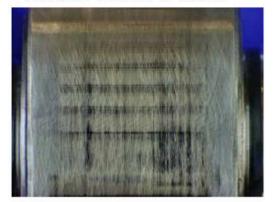

EATITIES LING SUMMARY REPORTS FOR AGE CONFIDENTIAL

Status overload endurance run for proof of robustness

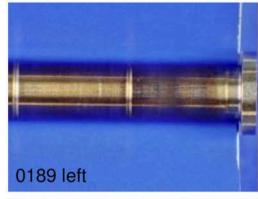
End of Life	VVT running time*	Right roller support deposit	Left roller support deposit		RS r. ear	Total Rating	
RS C3 + roller with edge	0192 317 h	6	7	4	7	6	1
	0193 317 h	6	8	5	7	7	
	0236 209 h	8	3	8	5	6	
RS C3 + Roller with edge	0194 115 h	n.d.**	n.d.	n.d.	n.d.	n.d.	
<u> </u>	0195 242 h	5	5	5	6	5	} 7
RS C3 + Roller without edge	0237 209 h	5	9	6	10	8	
RS C3 + Roller without edge	0238 98 h	8	5	8	4	7	
RP1.1 RS + roller without edge	0188 150 h	1	1	n.d.	n.d.	n.d.	1
	0189 293 h	1	1	2	2	2	
	0191 200 h	1	1		n.d.	n.d.	
RP1.1 RS + roller without edge	0239 98 h	2	1	1	1	1	1.5
RP1.1 RS + roller without edge	0190 198 h	1	1		n.d.	n.d.	
	0234 242 h	2	1	1	1	1	
	0235 242 h	1	1	(3)	2	2)

^{*} Running time without break-in period** n.d.: cannot be evaluated

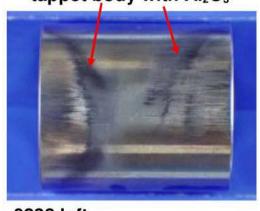
gray = clarification for striking feature



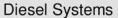
EATITIES LING SUMMERY RIPREVERSE CONFIDENTIAL


Status overload endurance run for proof of robustness

Chatter marks of cams

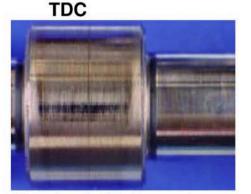

0189 cam drop

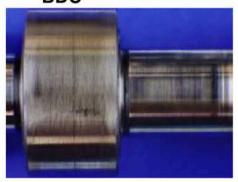
piston discolored



tappet body with Al₂O₃

0238 left

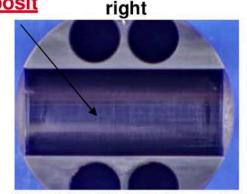




EALITIESTING STUMMERY THE FEVER SEE CONFIDENTIAL

Images RS C3 series+ roller with edge (hollow) A1) VVT_0192 317 h

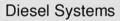
Cam track: Chatter marks BDC



left Deposit

Smoothing of roller edge: medium Run marks: medium

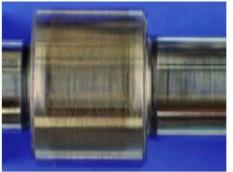
Roller edge: medium Run marks: high



Smoothing of roller edge: medium Run marks: medium

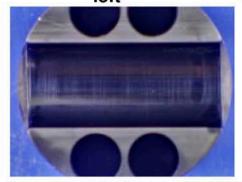
Roller edge: medium Run marks: high

Roller



EALITIESTING SUMMERNATIRE PROBLESS, PELESTIAL

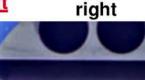

Images RS C3 series+ roller with edge (hollow) C1) VVT_0193 317 h



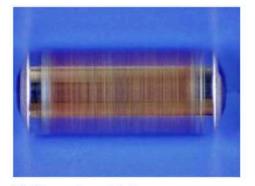
cam track: Chatter marks

BDC

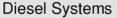
left

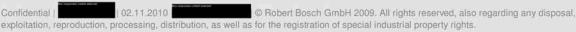


Smoothing of roller edge: medium Run marks: medium

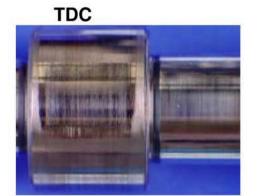

Roller edge: medium Run marks: medium

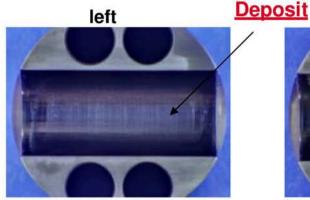
Deposit




Smoothing of roller edge: high Run marks: medium

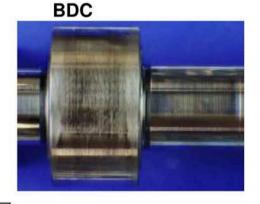
Roller edge: high Run marks: high

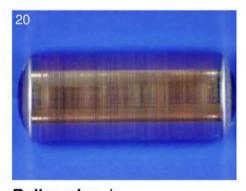


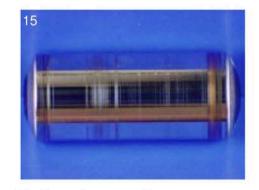


EATIOT SESTINGUE UM MARY THE FEVER AGE CONFEIDE NOTICE LA LICE DE LICE DE LA LICE DE LICE

Images RS C3 series+ roller with edge (hollow) A3) VVT 0236 209 h






right

Smoothing of roller edge: Run marks:

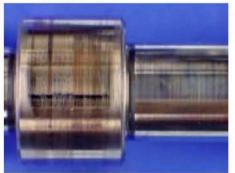
Smoothing of roller edge: medium Run marks: medium

Roller edge: low Run marks: medium

Roller edge: medium Run marks: low

Diesel Systems

Roller

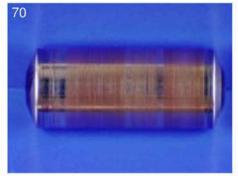

EATTOTE STING SUMMERY RIPERS PAGE CONFIDENTIAL

Images RS C3 series+ roller with edge (straight)

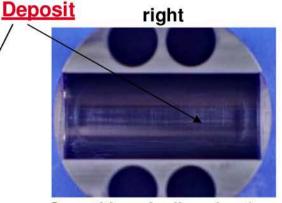
VVT 0195

242 h

TDC


Cam track: Chatter marks

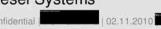
BDC



left

Smoothing of roller edge: low Run marks: medium

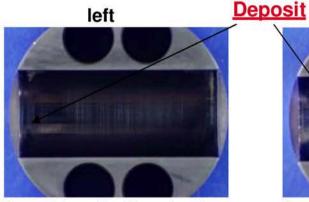
Roller edge: medium Run marks: medium

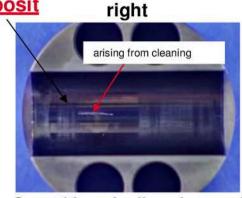


Smoothing of roller edge: low Run marks: medium

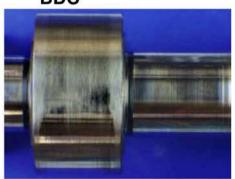
Roller edge: medium Run marks: high

Roller



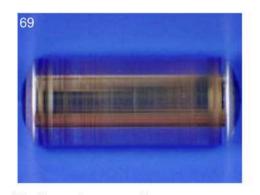


EATIOT SESTINGUE SIMMARY THE FEVER AGE CONFIDENTIAL


Images RS C3 series + roller without edge (straight) C3) VVT_0237 209 h

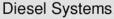
TDC

BDC



Smoothing of roller edge: low Run marks: high

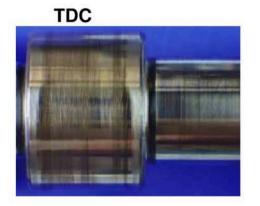
73

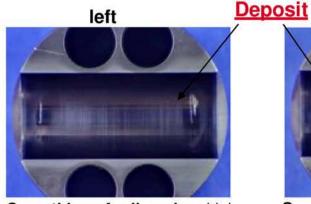

Roller edge: low Run marks: medium

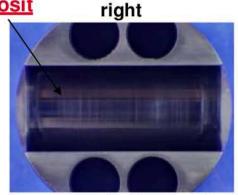
Smoothing of roller edge: medium Run marks: high

Roller edge: medium Run marks: low

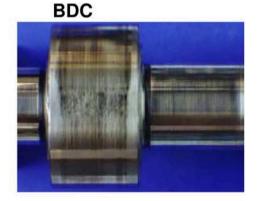
Roller

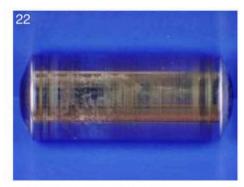




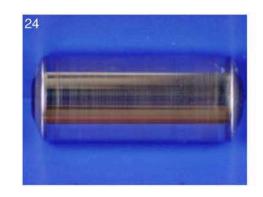

EATIOT SESTINGUE SIMMARY THE FEVER AGE CONFIDENTIAL

Images RS C3 series + roller without edge (hollow) A4) VVT_0238 98 h

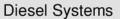




Smoothing of roller edge: high Run marks: high

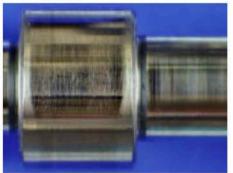


Smoothing of roller edge: high Run marks: high



Roller edge: medium
Run marks: medium

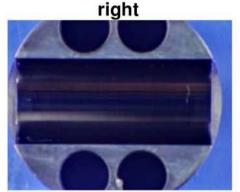
Roller edge: medium Run marks: low


EATION SESTING SUMMERN THE FOR FOR THE SET OF THE LOCAL PROPERTY OF THE SET O

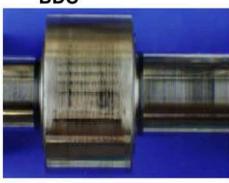
Images RP1 RS + roller without edge (straight)

S2) VVT 0189

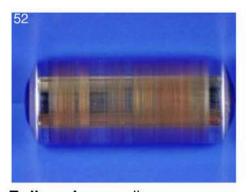
293 h


TDC

Cam track: Chatter marks


left

Smoothing of roller edge: low Run marks: low



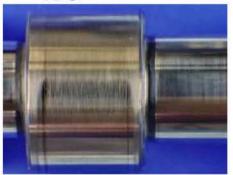
Smoothing of roller edge: low Run marks: low

BDC

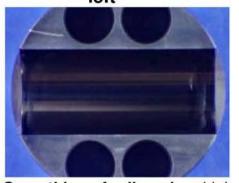
Roller edge: medium Run marks: medium

Roller edge: medium Run marks: medium

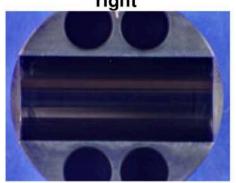
Roller


EATION TESTING SUMMERN THE REPORT OF THE LOCAL PROPERTY IN LINE OF

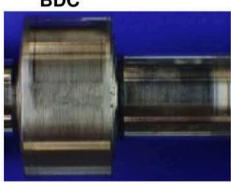
Images RP1 RS + roller without edge (straight)


S3) VVT_0239

98 h


TDC

left


right

Smoothing of roller edge: high Run marks: low

Smoothing of roller edge: medium Run marks: low

BDC

81

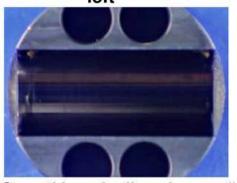
Roller edge: medium Run marks: low

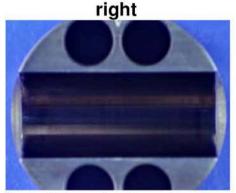
90

Roller edge: low **Run marks:** low

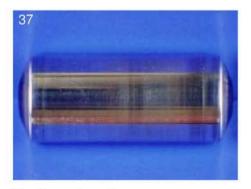
RT




EATTOTE STING SUMMERY RIPERS PAGE CONFIDENTIAL


B3) VVT 0234 Images RP1.1 RS + roller without edge (spherical) 242 h

left


Smoothing of roller edge: medium Run marks: low

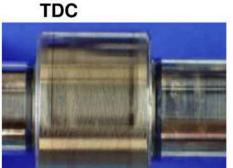
Smoothing of roller edge: low Run marks: low

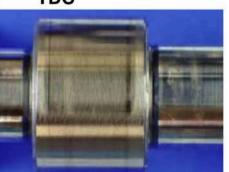
BDC

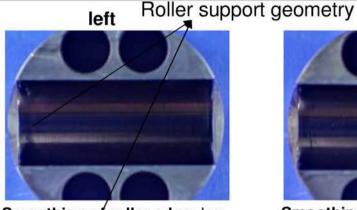
Roller edge: low Run marks: medium

Roller edge: low Run marks: low

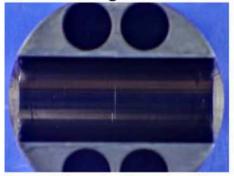
Roller

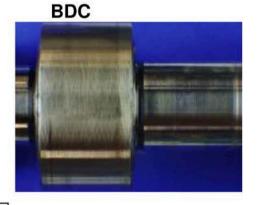


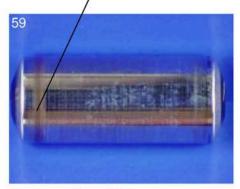




EATION SESTINGUS COMMANDE STATES OF THE SECOND SECO

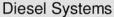

Images RP1.1 RS + roller without edge (spherical) D3) VVT_0235 242 h




Smoothing of roller edge: low Run marks:/low

right

Smoothing of roller edge: low Run marks: medium



Roller edge: high Run marks: low

Roller edge: medium Run marks: low

Confidential

Roller

Further work:

Implementation of the Q old test as a QC endurance run (batch release?) Development of a ratings catalog Shortening of ER to less than 50 hours

Repetition of the 12 ERs with graduated running times WK 16- WK19 Modification of QC ER test benches for Arctic diesel WK 20 WK 20 Creation of rating catalog with release levels Start QC ER with RP1 from WK 21

This will simultaneously create a broader basis for comparison

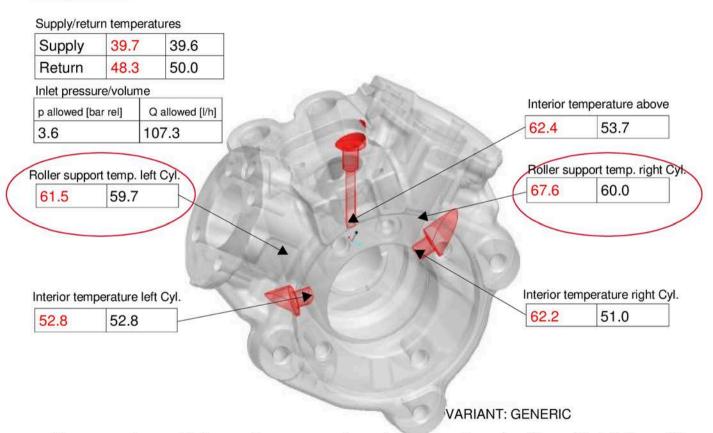
Status RP2:

Temperature measurement on the right counter-clockwise rotating pump with Arctic diesel (clear temperature increase of the right roller support in clockwise rotation)

Displacement of the supply from left to right (no positive effect)

Displacement of the supply as GP: pattern in production measurements WK 16 (Positive impact to expected results, such as counter-clockwise rotation)

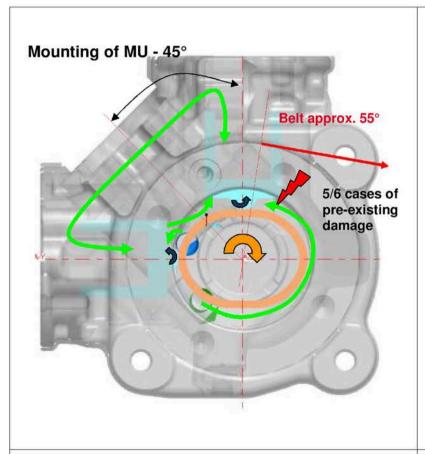
Summary:


RP2 has the potential of 15-20°C on the roller support RP1 and RP2 on the basis of manufacturing after 6/2009 has the potential RoW boundary fuel / Arctic diesel / additives / to pass

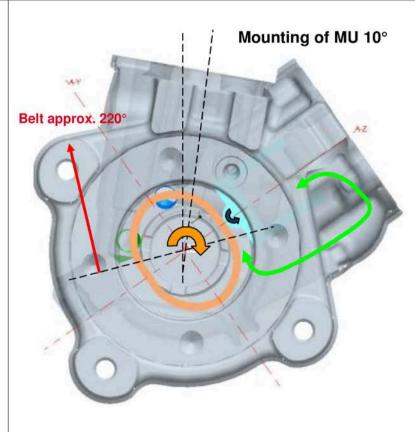
EATTOCP4.2 10171 perate PATHESE LPAGE IF ONE SUBJECTION

Temperatures CP4.2: Measurement with Arctic diesel, speed: 598 rpm, rail pressure 2,298 bar

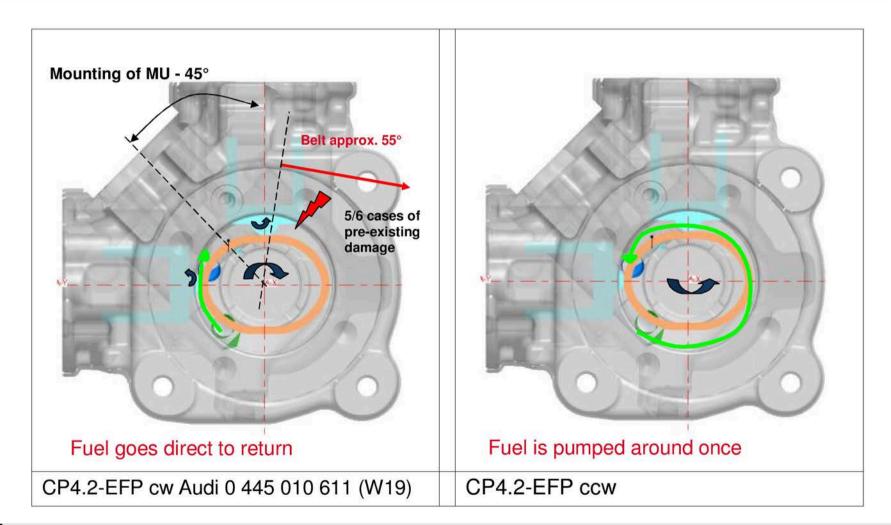
Clockwise Counter-clockwise

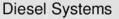


Temperature on the roller support surface can be significantly higher. Measuring point 1 mm away from surface. Potential min. 15-20 ° C on the surface



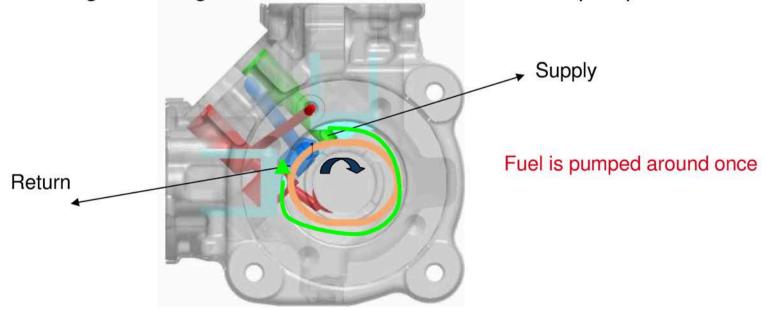
EATION TO THE PAGE CONFIDENTIAL


CP4.2-EFP cw Audi 0 445 010 611 (W19)



CP4.1-EFP cw VW / Audi

EATION TO THE PAGE CONFIDENTIAL



10945Null talk force ENTIRE PAGE CONFIDENTIAL

RP2 measures to reduce the temperature in the CP4.2

- Better local cooling of the critical roller support with fuel (relocating the supply to the temperature critical point) producing a similar condition of the supply / return processes associated with the CP4.1
- Using new flange with more balance volume in the pump interior

Status task force ENTIRE PAGE CONFIDENTIAL

RP2 measures to reduce the temperature in CP4.2 Initial estimate:

- Better local cooling of the critical roller support with fuel (relocating the supply to the temperature critical point) producing a similar condition of the supply / return processes associated with the GP version
 - 1. Functional analyses (Pump, system)

WK16

2. Robustness-tests with Qalt

WK24

3. Preparation for production

by WK28

Flange changes can be checked in the same time window; possible introduction from WK 21

New analyses on the possible influence of the camshaft on the formation of deposits.

- Influence of no shot-blasting
- Pre-damaged parts show no metal splashes, fusing

EATION TO THE PAGE CONFIDENTIAL

2009-CP4-0727 L 2.12.2010 Acetone easily cleaned Another hypothesis of location of the deposits Deposits Roller support Roller Slip of the roller on the cam after introduction of fuel on the cam Cam surface Brown deposits on the camshaft; roughness of the shaft reduced

Further action on camshaft influence

- Investigation of fine geometry shot-blasted / non shot-blasted camshaft WK16
- Investigation of the brown deposits on camshaft
 WK16
- 3. ER with shot-blasted and non shot--blasted camshafts in Q old Arctic diesel WK19

EATION TO PAGE CONFIDENTIAL

Release Strategy ROW from RB perspective

Procedure for RoW release

Different - possibly alternating - fuel conditions currently do not allow national releases by Bosch (See Non-responsive content removed

Environmental influences must be proven & secured with vehicle endurance runs@ OEM (water, altitude, temperature,)

That is why RB release* involves tested boundary fuels (incl. RoW fuel)

Viscosity -> Arctic diesel

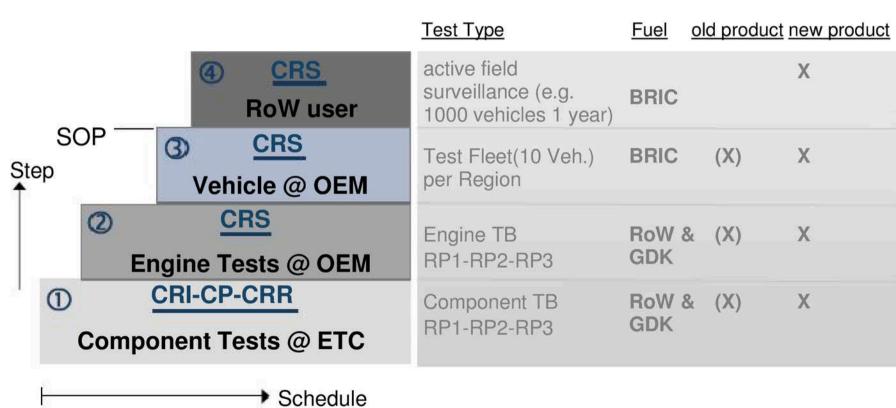
Additive -> Arctic diesel

Biofuels -> open

Lubrication -> BDF650

Vapour pressure -> Kerosene

RoW fuel 1 -> Combination viscosity, lubricity, vapour pressure, water (no additives)

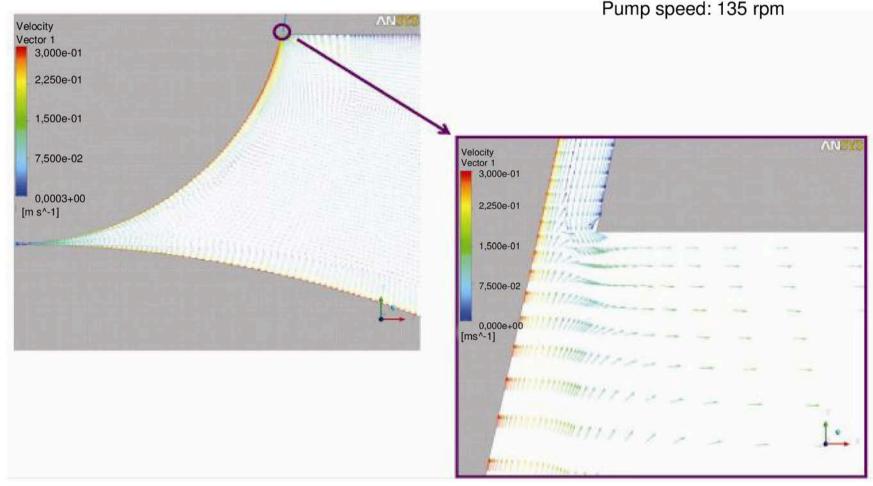


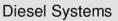
^{*}Same as current release process Release compared with tested fuel EN590 and not national release, e.g.

EATION AND STREETING OF NATION PAGE CONFIDENTIAL

Release of FIE Components

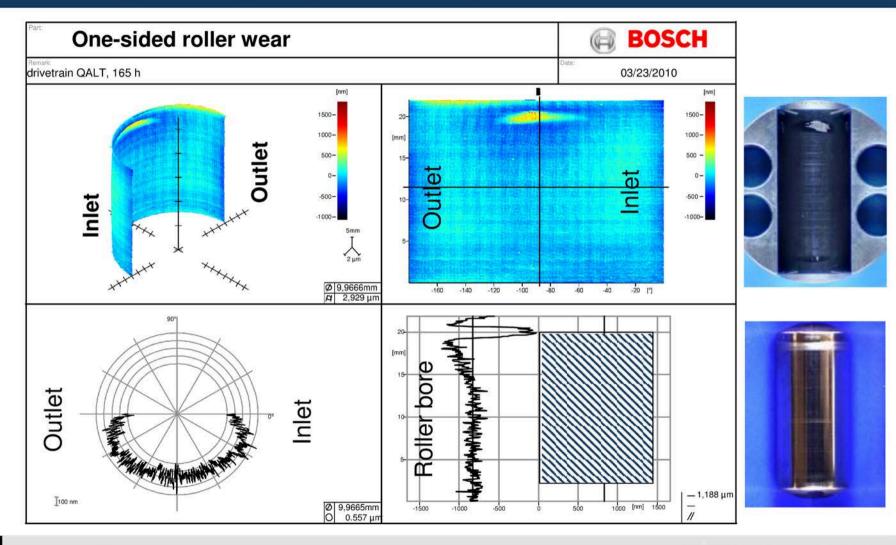
step 4 is for confirmation of common market understanding for better end customer satisfaction

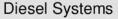

EATION TO THE PAGE CONFIDENTIAL


Backup

CP4-simulationENTIREtPAGET@ONFIDENTIAL cam/roller/roller support

Velocity vectors:





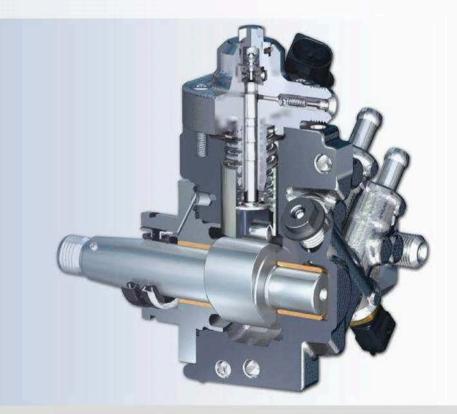
EATIOT ESTINGUS DIMMARY RIPERS PAGE CONFIDENTIAL

Overview of CP4 robustness

Non-responsive content removed

- Anti-wear package 1 (RP1)
- Anti-wear package 2 (RP2)
- Failure statistics CP4

 Non-responsive 3)



1) Anti-wear package 1 (RP1)

Non-responsive content removed

CP4 robustness

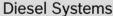
Anti-wear package 1

Assignment

Increase lubricating film between roller support and roller for fuels with lower viscosity (reduction of mixed friction fraction & temperatures)

Measures (derived from simulation results)

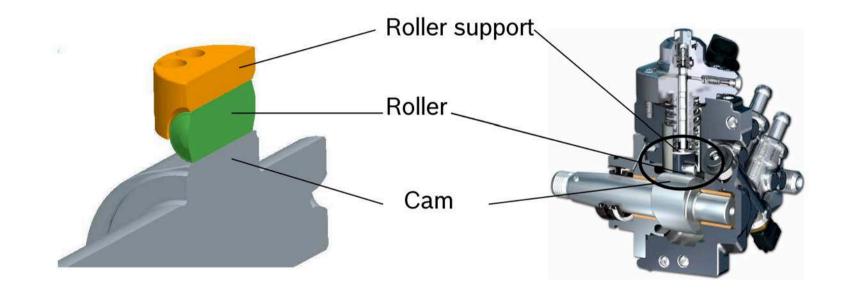
- Reduction in roughness in the roller support due to changeover to C2 coating
- Prevention of metal splashes (for process-related reasons there are no metal splashes with C2)
- Reduction of play between roller and roller support (smaller roller support bore)
- Reducing the roughness of the roller
- Optimization of edge taper on the roller (slender taper)


Execution

Testing RP1 vs. series in QHALT (600 rpm; 2,300bar; Arctic diesel; 90°C)

Result

RP1 increases lubricating film by 2 x (derived from findings)


RP1 in series for all CP4.2 at Audi since WK12

CP4 robustness

Anti-wear package 1

Anti-wear package 2 (RP2)

Non-responsive content removed

CP4 robustness

Anti-wear package 2

Assignment

Reduction of local temperatures of the right (critical) roller tappet with target level CP4.1 for clockwise CP4.2 (Audi V6, not Audi V8)

Measures

Optimized arrangement of supply & return position (result: Swapping of supply / return connections

Execution

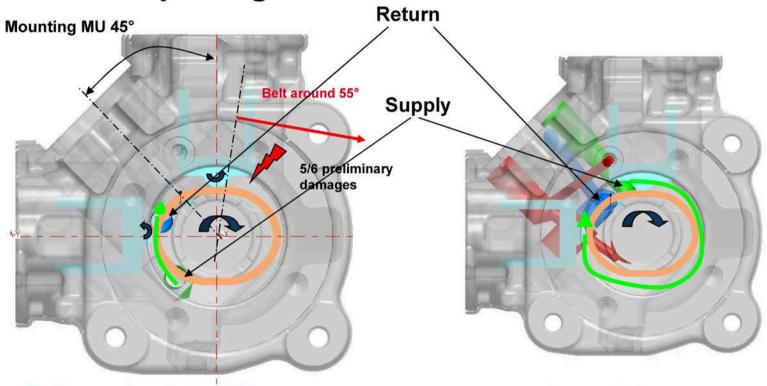
Temperature measurements on roller support
Testing RP2 in QHALT (600 rpm; 2,300bar; Arctic diesel; 90°C)

done

WK24

Result

Function measurements show by the optimized supply/return adjustment that temperatures as in CP4.1 can be achieved (temperature reduction of > 15°C in lubrication gap).


Further work

Confirm effectiveness in QHALT endurance run Pumps for testing delivered to Audi. Introduction in series possible from WK 28. WK24

CP4 robustness

Anti-wear package 2

Fuel goes directly to outlet

CP4.2-EFP cw Audi W19

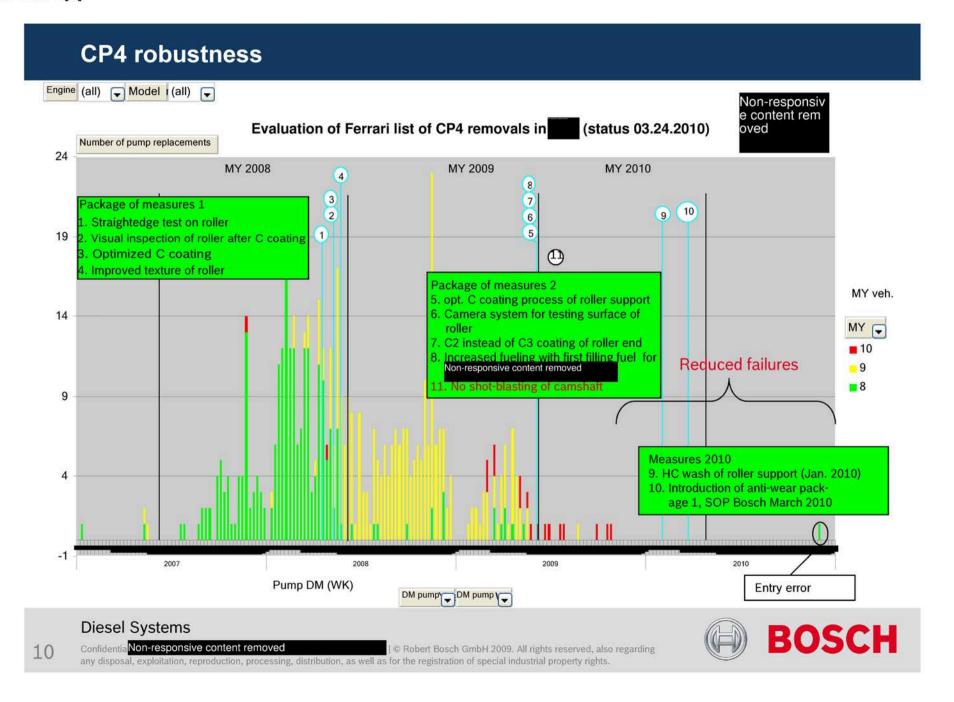
Fuel is recycled once


CP4.2 EFP cw AWP2 for Audi W19

3) Failure statistics

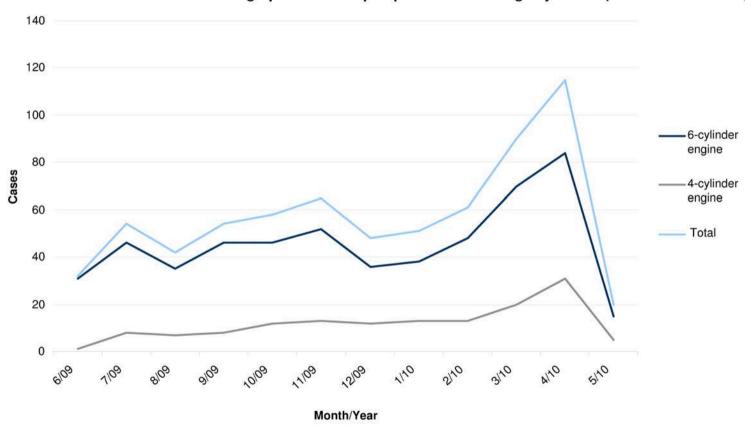
Non-responsive content removed

CP4 robustness


Failure statistics Non-responsive content

Italy (see page 10, 11, 12)

- Decline in complaints CP4.2 with pumps DM after Jun 2009 (page 10)
- Absolute increase in complaints CP4.2 & CP4.1 in from 03/2010 (page 11, 12)
 - Presentation of relative values (CP4.2 / CP4.1 / total / vehicle model) agreed up on with Audi
 - Joint analysis "Influence of vehicle model as part of task force
 - CP4.1 complaints likely not 100% drivetrain damage, but rather
 - Non-starters due to shavings in intake valve
 - Pump exchange due to noise complaint

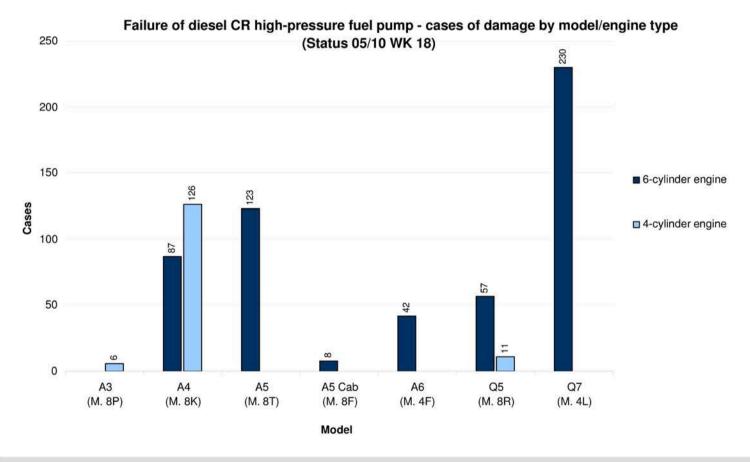




CP4 robustness

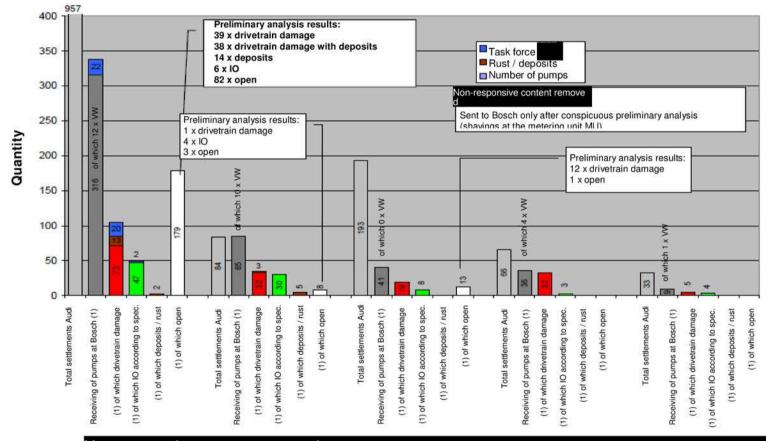
(total of all vehicles) Failure statistics -

Failure of diesel CR high-pressure fuel pump - cases of damage by month (status: 05/11 WK 18)

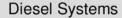


CP4 robustness

Failure statistics Non-responsive content removed (vehicles)

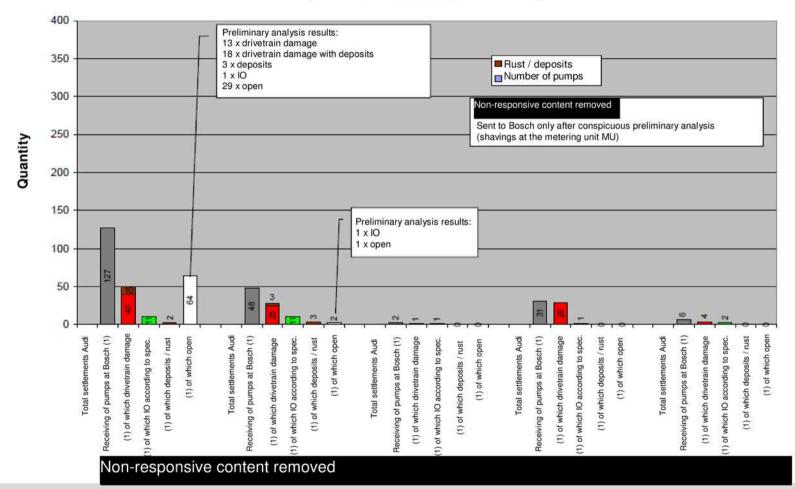

Audi CP4.2 field failures

TOP 5 countries


Base:

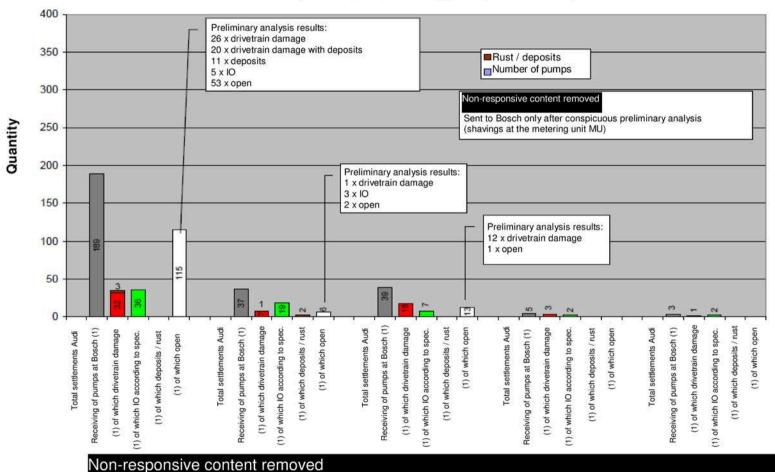
Audi: SAGA analysis as of 07.04.2010 from TOP meeting on 07.12.2010

Non-responsive content removed

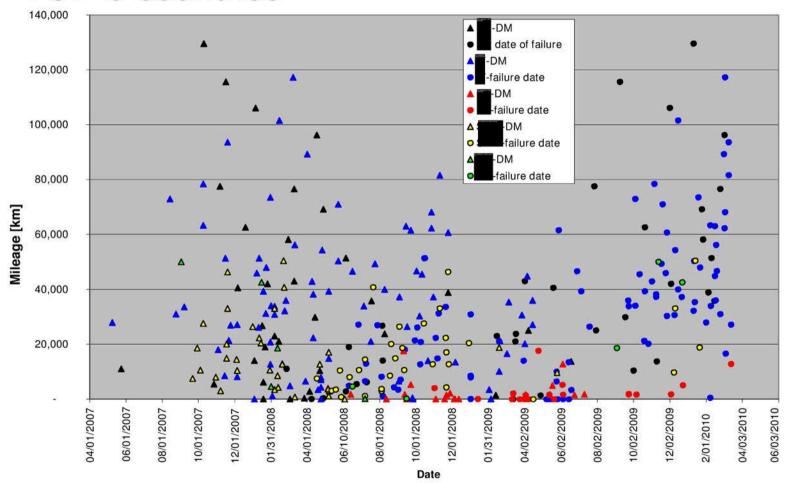


Base: Bosch: IQIS as of 07.20.2010

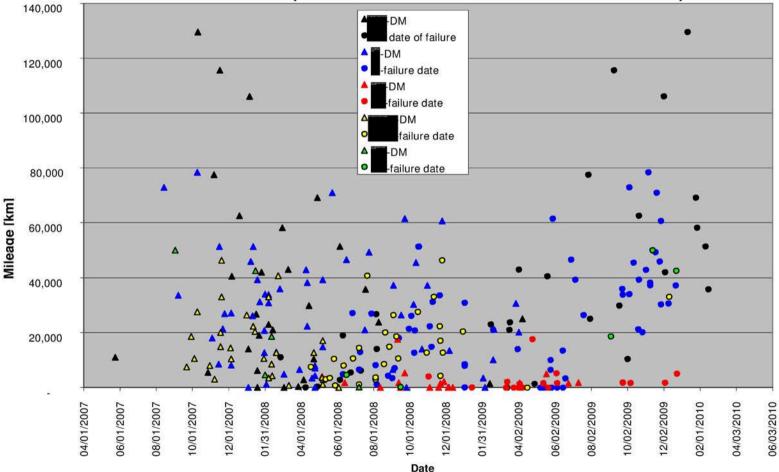
TOP 5 countries (DM of pump before 06.01.2008)

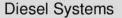


EA11AUdi CP2P.2 field railures PAGE CONFIDENTIAL


Base: Bosch: IQIS as of 07.20.2010

TOP 5 countries (DM of pump starting from 06.01.2008)





TOP 5 countries

TOP 5 countries (Status as no: 3/16/2010)

EAD Quality strategy 2.01 TDI BIN5

	Field failures BI	N5	
	Topic	Cause	Responsibility
1	HPP CP4.1 Bosch	Failures/ drivetrain damage	American contract

Team	
Non-responsive conte ed	ent remov

Problem: HPP failures due to drivetrain damage

(Tribo system: Roller support, roller, camshaft)

Cause: - Q problems RB (tolerances, friction pairing, etc)

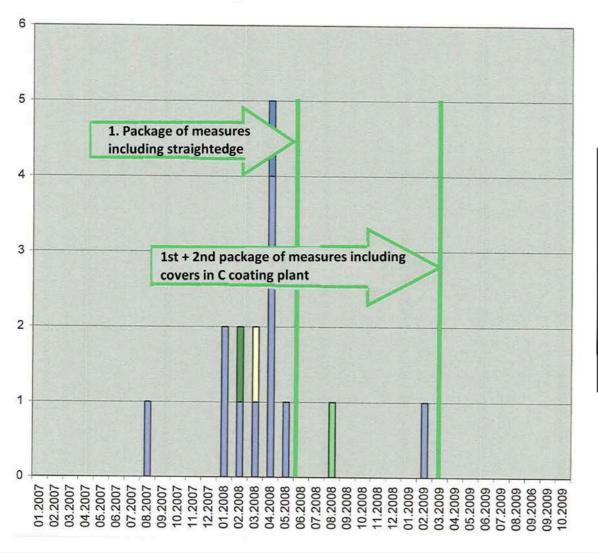
- Fuel properties (HFRR, water content, etc)

Measures: - Implemented measures, see measures package RB

- Task force CP4 (Audi/ Bosch/ VW)

- Validation of initial CP4.1 sample pumps with anti-wear package 1 in NMS / NCS since WK 08/10. RP1 at Audi V6 with CP4.2 already into series

production.


 Requirement: Incorrect fueling guard in tank connector for NMS, NCS and all subsequent CR

installations

Deadline: continuous

EA11003EV0213310P4.1 field complaints from USA (U3L 15U 755A)

CP4.1 Field complaints from the USA, Status as on 10.21.2010

- No drivetrain damage, shaft seal leaking due to sand
- Drivetrain damage, pump delivered incomplete, metering unit missing
- No drivetrain damage, corrosion, water and deposits from biodiesel
- OK according to specification
- Drivetrain damage

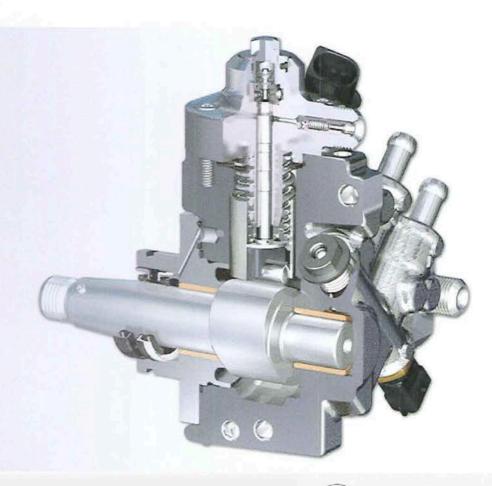
Source IQIS 01.21.2010

EA11003EN-02133/IW CP4.1 TEN CIMPLATAS FRONCES (DID 130 75 5A)

Previous measure

Web Williams			Introduct	ion FeP	Introduction JhP		
No.	Measures to reduce drivetrain damage		Today's date	WK	Today's date	wĸ	
1	No reuse of tappet after OK press-in process		5/10/2007	WK19/07	1/31/2008	WK04/08	
2	Click-clack testing before delivery		5/10/2007	WK19/07	1/31/2008	WK04/08	
3	Click-clack test		5/14/2007	WK20/07	1/31/2008	WK04/08	
4	Delta T and Delta T max test at test rig		5/23/2007	WK21/07	1/31/2008	WK04/08	
5	Click-clack test at the end of assembly line		5/29/2007	WK22/07	1/31/2008	WK04/08	
6	new switching process between flushing and testing		5/30/2007	WK22/07	1/31/2008	WK04/08	
7	Simultaneous noise measurement		6/18/2007	WK25/07	1/31/2008	WK04/0	
8	Repeat inspection on friction coefficient test rig dropped		6/20/2007	WK25/07	12/1/2007	WK48/0	
9	Optimization of test rig sequence (n>500 rpm)		07/09/2007	WK28/07	1/31/2008	WK04/0	
10	Cylinder head installation with 5° torsion allowance	8 8	7/23/2007	WK30/07	12/1/2007	WK48/0	
11	Dry pressing in of roller support		7/23/2007	WK30/07	02/06/2008	WK05/0	
12	Uncoated spring plate (customer C)		7/23/2007	WK30/07	1/31/2008	WK04/0	
13	Introducing dwell time during roller tappet assembly		8/28/2007	WK35/07	2/6/2008	WK05/0	
14	Extension of high-load testing point	-11	10/1/2007	WK40/07	1/31/2008	WK04/0	
15	Testing point V7.2 (Customer C)		11/16/2007	WK46/07	1/31/2008	WK04/0	
16	improved visual inspection of roller support	_	12/13/2007	WK50/07	1/31/2008	WK04/0	
17	Friction coefficient testing +/- 10°		12/13/2007	WK50/07	2/7/2008	WK05/0	
18	Tappet position query during assembly		12/21/2007	WK51/07	2/7/2008	WK05/0	
19	New visual inspection catalog for roller support	-11	01/02/2008	WK01/08	1/20/2008	WK02/0	
20	Test program V7.2 (VW), visual inspection catalog for roller support	-1-	01/11/2008	WK02/08	1/31/2008	WK04/0	
21	Test program V7.2 (Audi)	-+-	02/01/2008	WK05/08	1/31/2008	WK04/0	
22	Changeover of roller for models507/508	1	3/17/2008	WK12/08	1/31/2008	WK04/0	
23	Straightedge testing, visual inspection catalog for roller support		04/07/2008	(WK15/08)	4/7/2008	WK14/0	
24	Cleaning cloth with straightedge test	-1	05/01/2008	WK18/08	5/1/2008	WK17/0	
25	Visual inspection of the roller after C coating		05/01/2008	WK18/08	5/1/2008	WK17/0	
26	Optimization of the C coating		05/01/2008	WK18/08	5/1/2008	WK17/0	
27	Changeover of roller for models 611/613 to second source supplier	-	05/15/2008	WK20/08	11/3/2008	WK44/0	
28	New washing and transport frames for the roller	-+-	10/29/2008	WK44/08	10/29/2008	WK44/0	
29	Modified RS holding tool when pressing in the tappet body	-+-	11/24/2008	WK48/08	5/6/2009	WK19/0	
30	Carbon covers / holders in system N for roller support	\rightarrow	12/12/2008	WK50/08	12/12/2008	WK50/0	
50		-4-1	12/12/2000	W100/00			
	Camera system for detecting metal spatter on roller support System installed / trial			WK19/09	Roller support will be supplied from FeP		
31			Laboration and the second	(amainteen mangemen	Roller suppo		
	Series launch at the earliest from middle 06.2009		No. of parts WK 25/09 Roll		supplied fr	support will be blied from FeP	
00	Optimized substrate holder to prevent fusing on roller, at the earliest		Activity broken off because		Activity broken off because		
32			not expedient WK32/09		not expedient WK32/09		
33	Carbon covers / holders in system O for roller support		3/16/2009	WK12/09	3/16/2009	WK12/0	
34	introduction of C2.1 coating instead of C3 coating on roller front surface		5/23/2009	WK22/09	5/23/2009	WK22/0	

Legend Measure implemented


Introduction to plan
Introduction date
has passed

Implementation not expedient, or effectiveness being checked

Anti-wear package 1 for CP4

Non-responsive content removed

Diesel Systems

Confidential Non-responsive content removed 01.20.2010 | Non-responsive content remove 01.20.2010 | Non-responsive 01.20.2010

Anti-wear package for CP4

Anti-wear package 1

Task

Increase in robustness of drivetrain by increasing the lubricant film thickness between the roller support hole and the roller.

Features of anti-wear package 1

- Reduction of the roller support texture in combination with changeover to C2 coating on roller support
- 2) Reduction of play between the roller support and the roller by shifting the tolerance center and the tolerance width of the roller support hole.

Results from simulation: Increase in robustness of ~ 50%* (*compared to today's borderline tolerances)

Further work: Verification in component verification

WK8

Diesel Systems

4 Confidential | Non-responsive content removed | 01.20.2010 | Non-responsive content removed | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, processing, distribution, as well as for the registration of special industrial

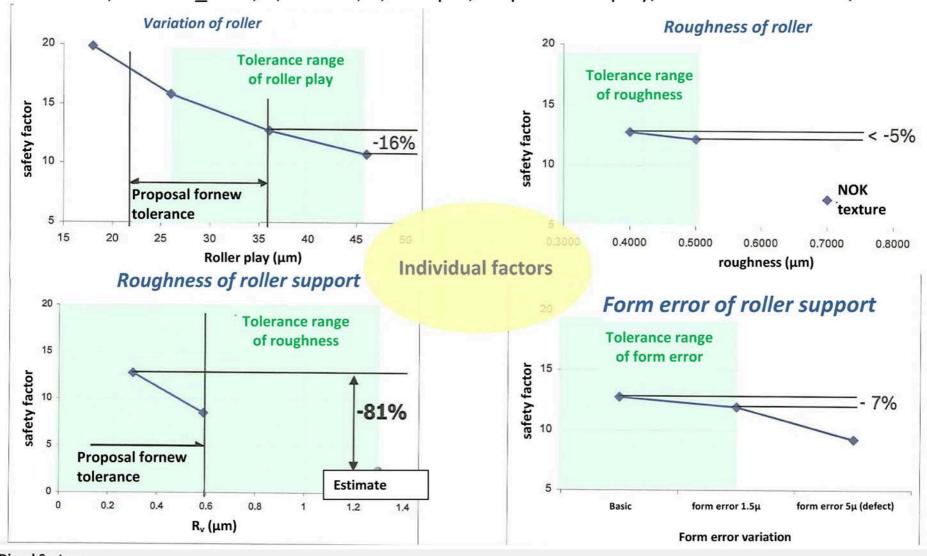
Anti-wear package for CP4

Anti-wear package 1

Basic testing of C2 coating including approval at two customers with EN590 and BDF520 (USA) exist (total runtime of the test ~ 70,000h)

Audi wants short-term use for W19 6 cylinder engines (pump type .. 611).

RB will check by 01.27.2010 the changeover possibilities and the risks related to it.

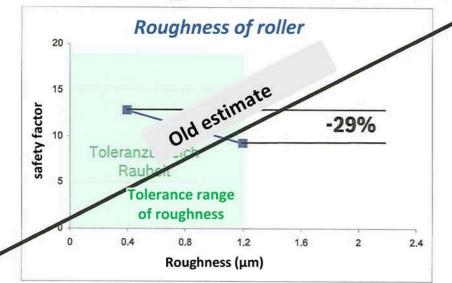


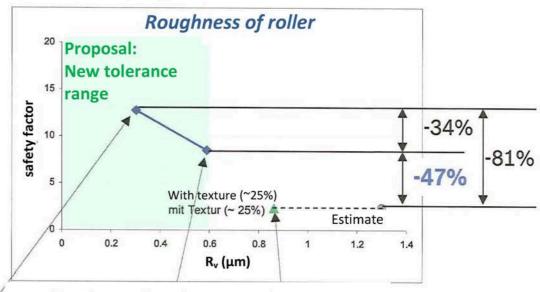
Anti-wear package for CP4

Presentation of safety factor against slip in TDC:

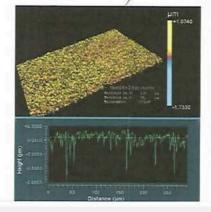
CP4.1, 2 x 5.25_s032, 1,800 bar, 1,000 rpm, 36 μ m Roller play, kin. visc. = 2.7 mm²/s

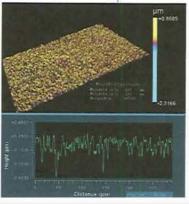
Diesel Systems

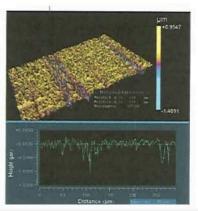

6 Confidential | Non-responsive content removed | 01.20.2010 | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, processing, distribution, as well as for the registration of special industrial


Anti-wear package for CP4 CONFIDENTIAL

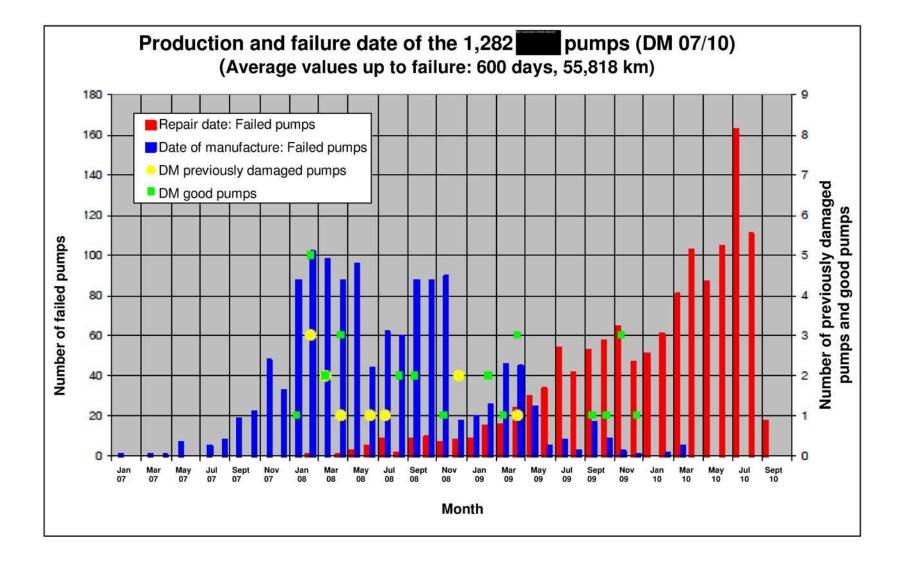
Presentation of safety factor against slip in TDC:


CP4.1, 2 x 5.25_s032, 1,800 bar, 1,000 rpm, 36 μ m Roller play, kin. visc. = 2.7 mm²/s



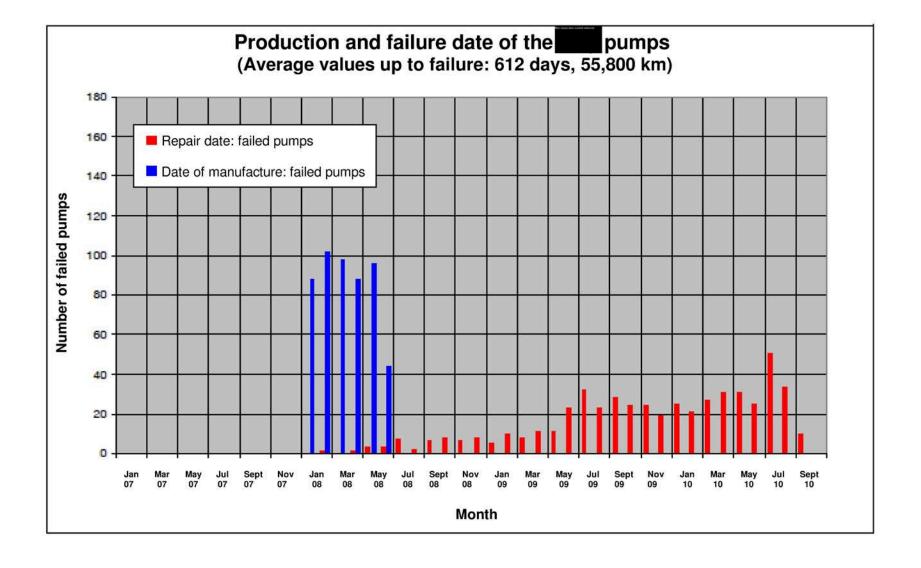

Application safety factor against estimated roughness!

Application safety factor against R_v (tactile measurement)

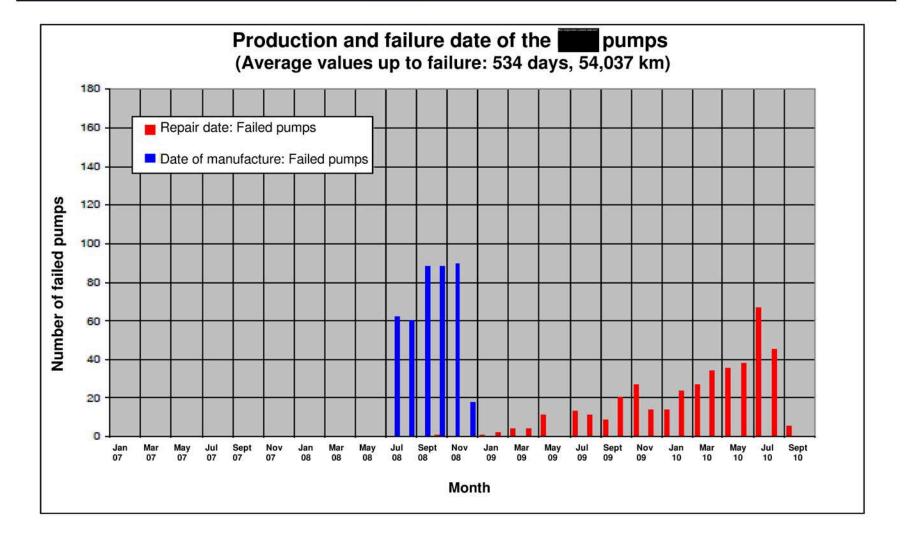


Diesel Systems

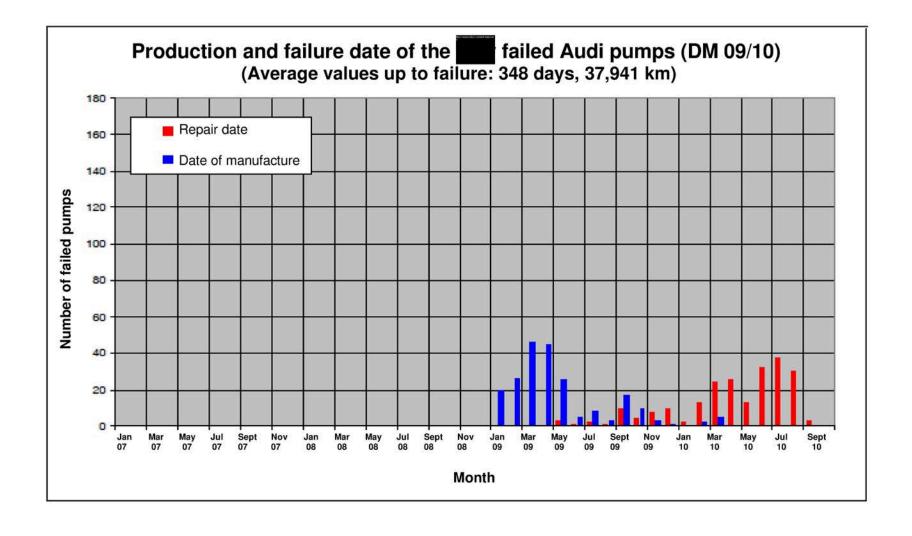
7 Confidential | Non-responsive content remo | 01.20.2010 | Non-responsive content removed | © Robert Bosch GmbH 2009. All rights reserved, also regarding any disposal, exploitation, reproduction, processing, distribution, as well as for the registration of special industrial



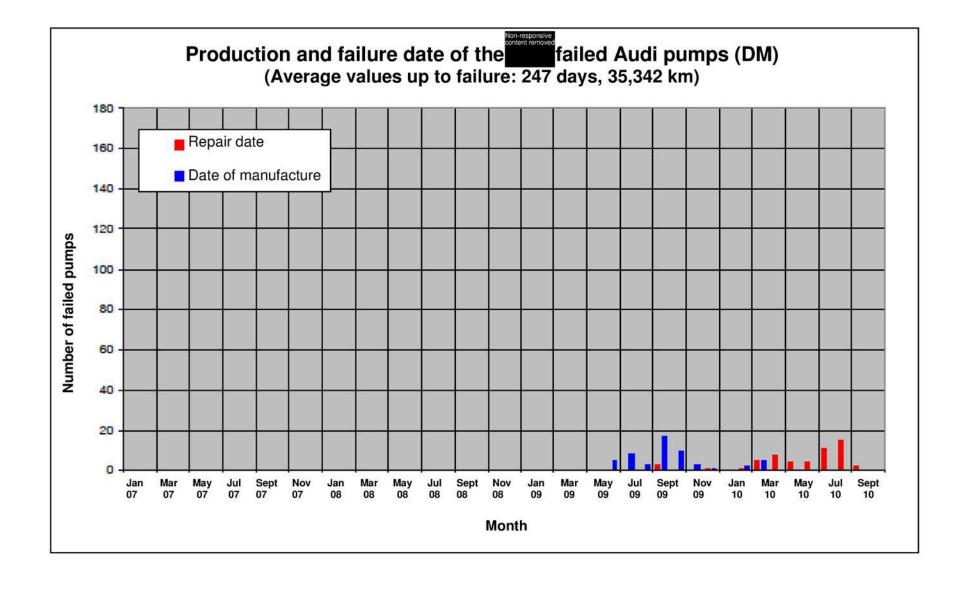
Audi CP4 Task Force, failures Non-responsive cor



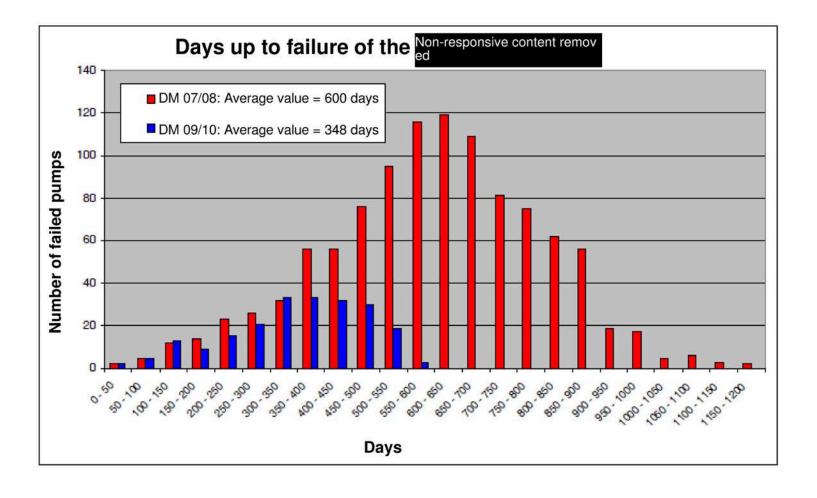
Audi CP4 Task Force, failures Non-responsive content removed



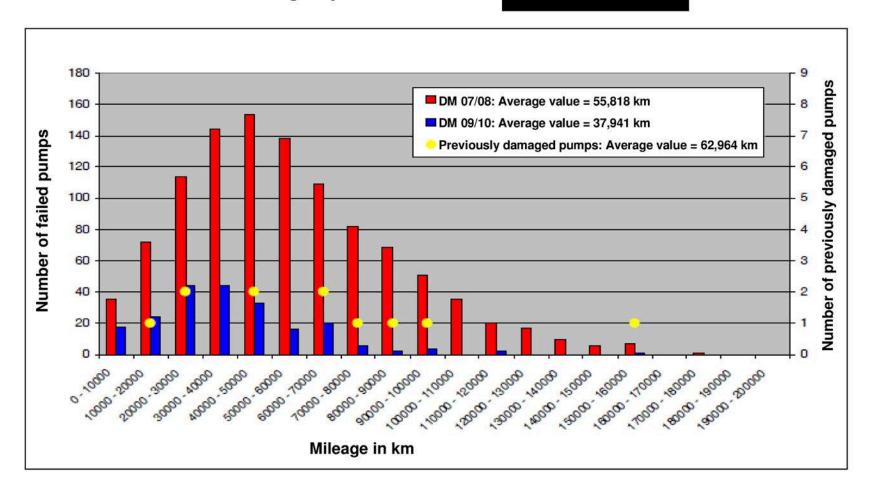
Audi CP4 Task Force, failures

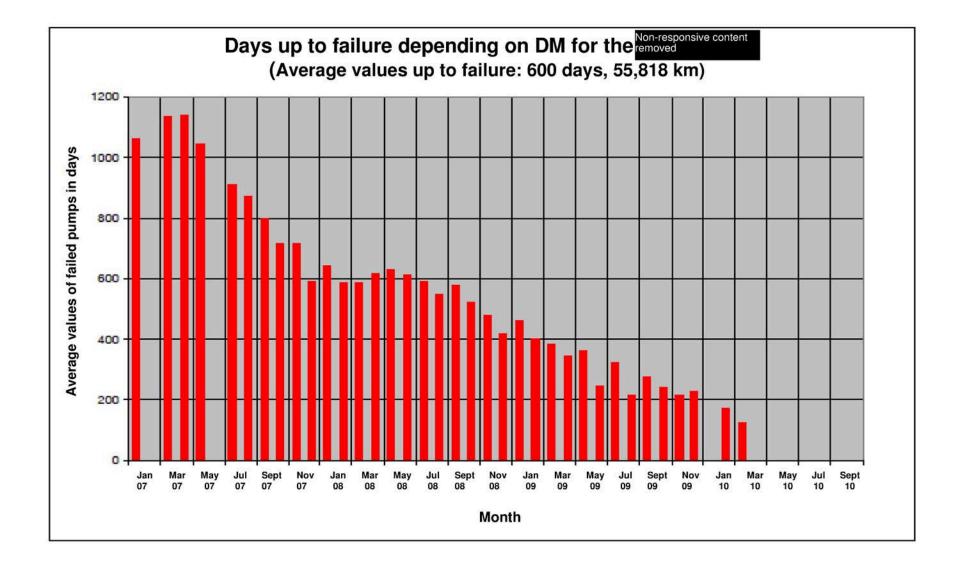


Audi CP4 Task Force, failures Non-responsive content removed

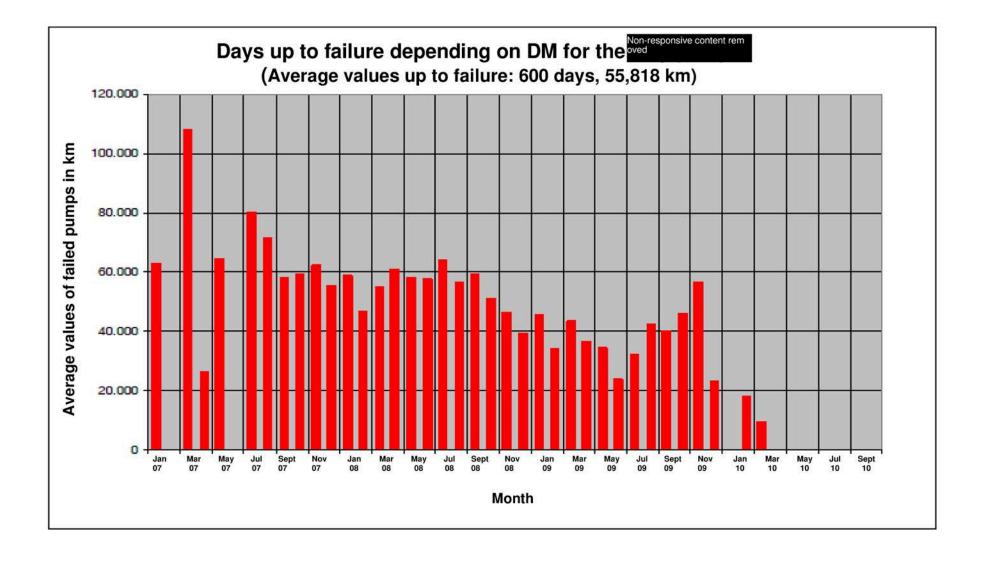


Audi CP4 Task Force, failures

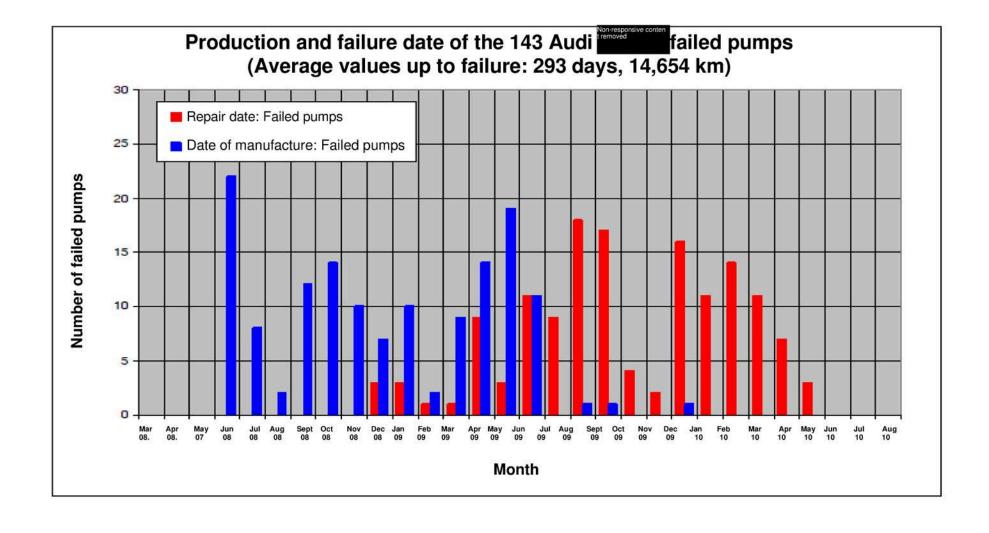

Audi CP4 Task Force, failures Non-response


Audi CP4 Task Force, failures Non-responsive content removed

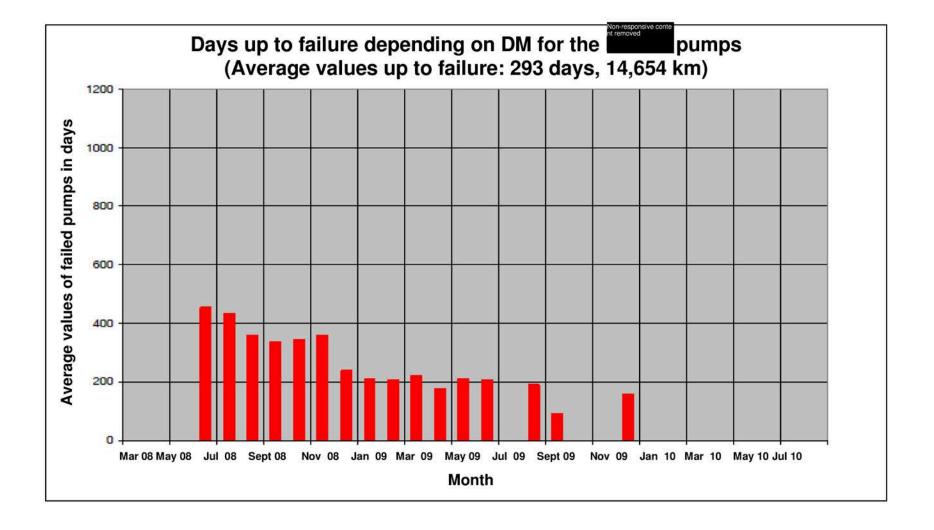
Mileage up to failure of the ed Non-responsive content remov



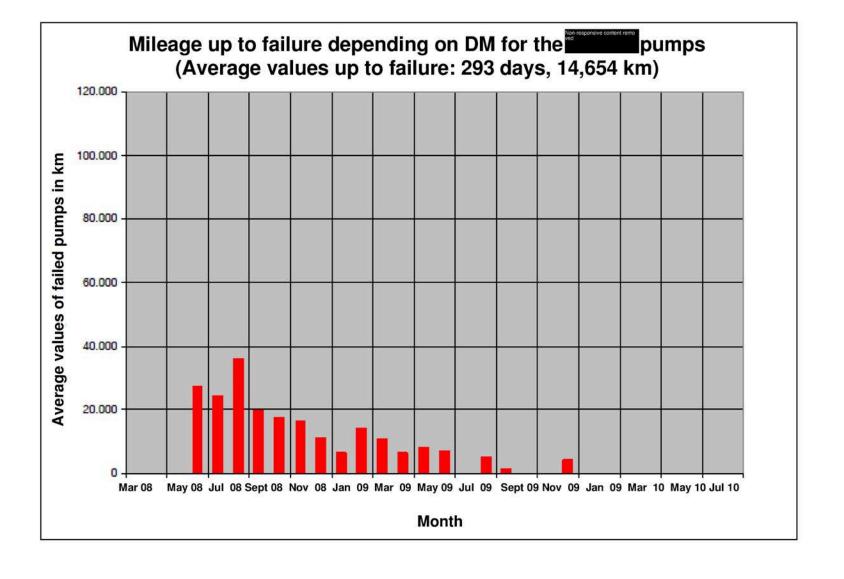
Audi CP4 Task Force, failures



Audi CP4 Task Force, failures Non-respons



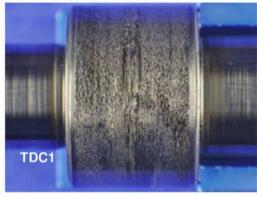
Audi CP4 Task Force, failures Non-responsive content removed

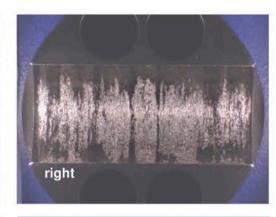


Audi CP4 Task Force, failures Non-responsive content re

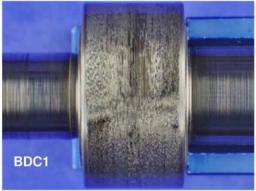
Audi CP4 Task Force, failures Non-responsive content removed

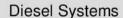


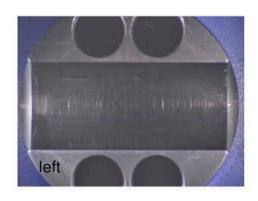


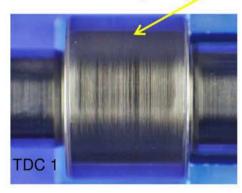

Non-responsive co ntent removed CP4.2 Audi

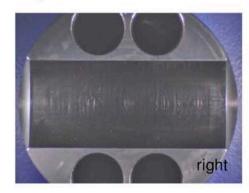
2010-CP4_0644 Failed pump field RT unknown

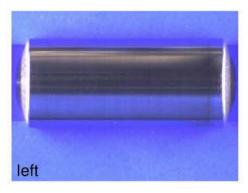

0 445 010 611; DM: 100121 BPT 1190; C-Index 05; 059 130 755 AH

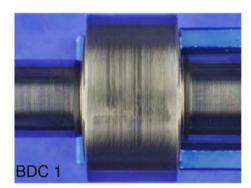


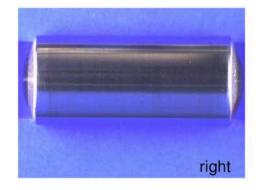


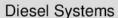


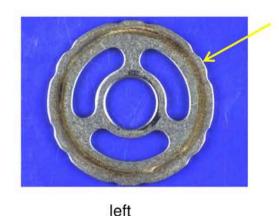

CP4.2 Audi


2010-CP4_0643 Road Test RP2 with 43,189km W36 0445 B20 321_01; 000005 BPT 4000; draft 301 181 KL

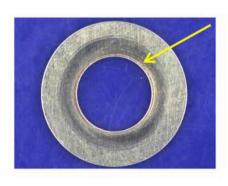

Slight signs of smoothing



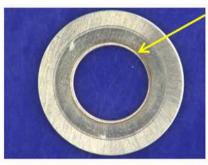




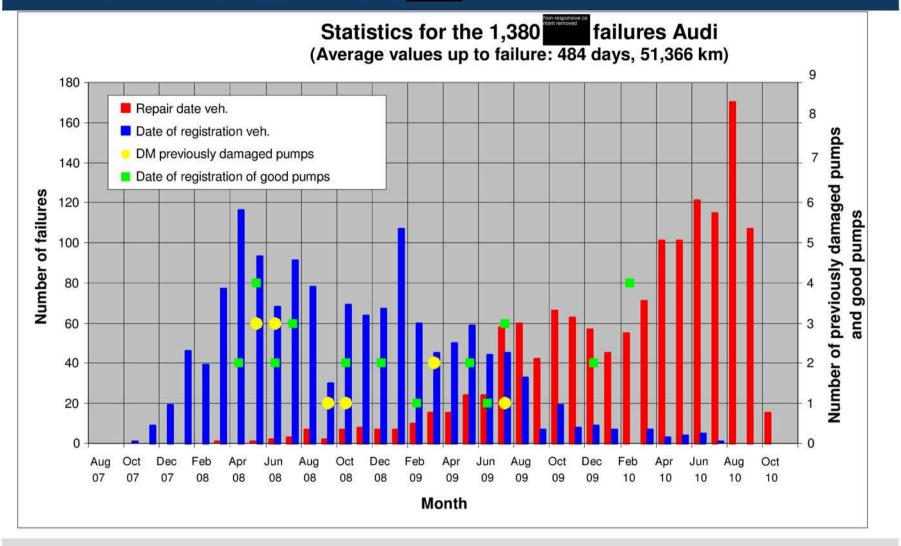
CP4.2 Audi

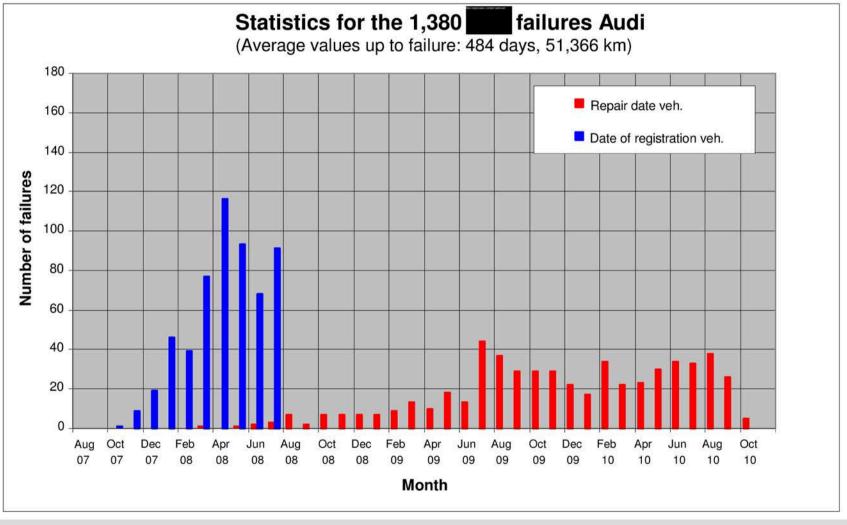

2010-CP4_0643 Road Test RP2 with 43,189km W36 0445 B20 321_01; 000005 BPT 4000; draft 301 181 KL

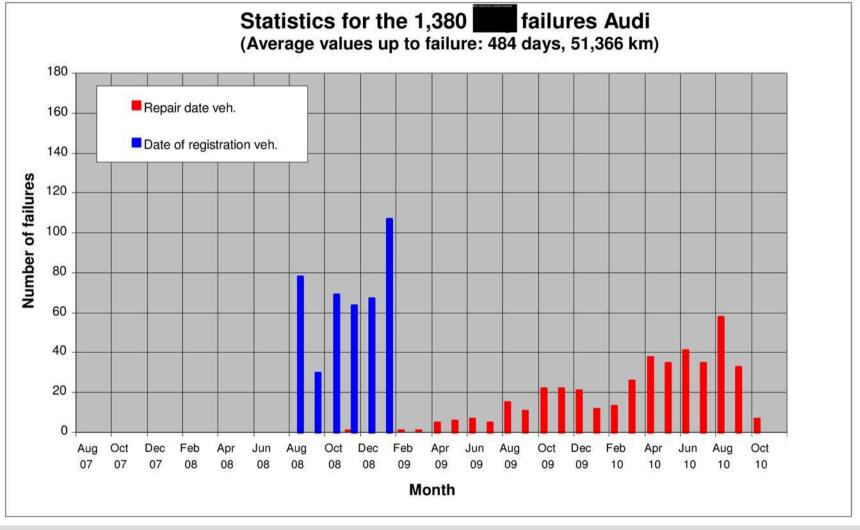
Slight coating



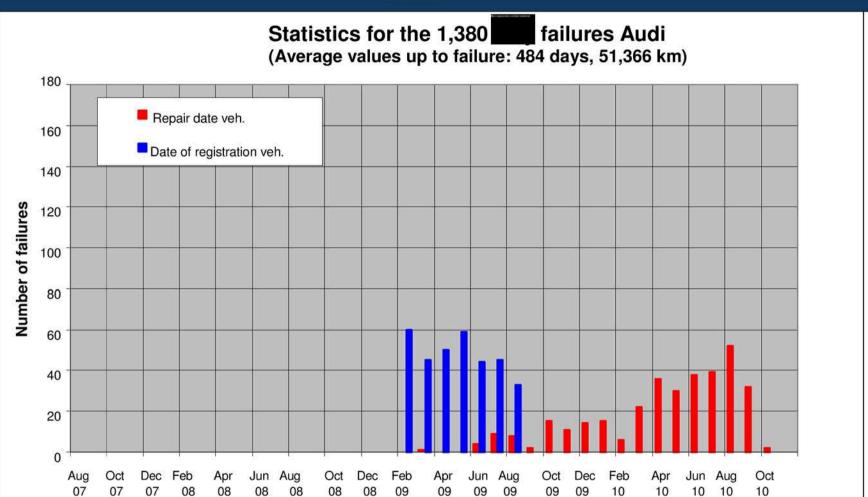
right



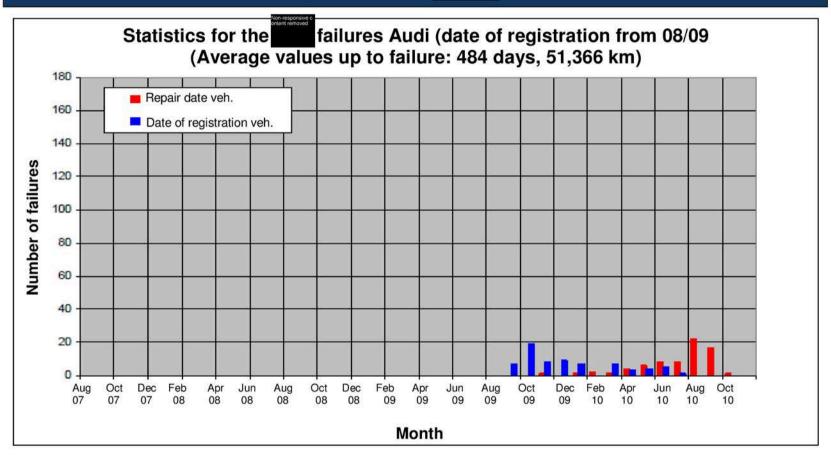




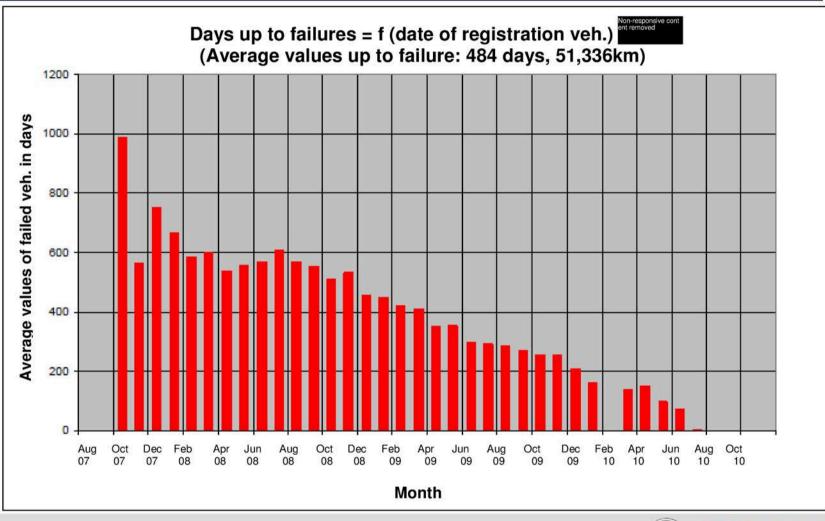
Audi CP4 Task Force, failures Non-responsive con



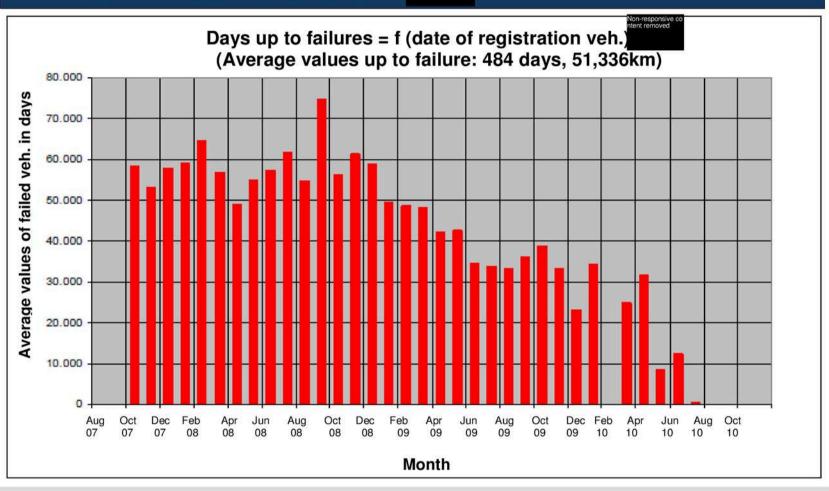
Audi CP4 Task Force, failures Non-responsive con



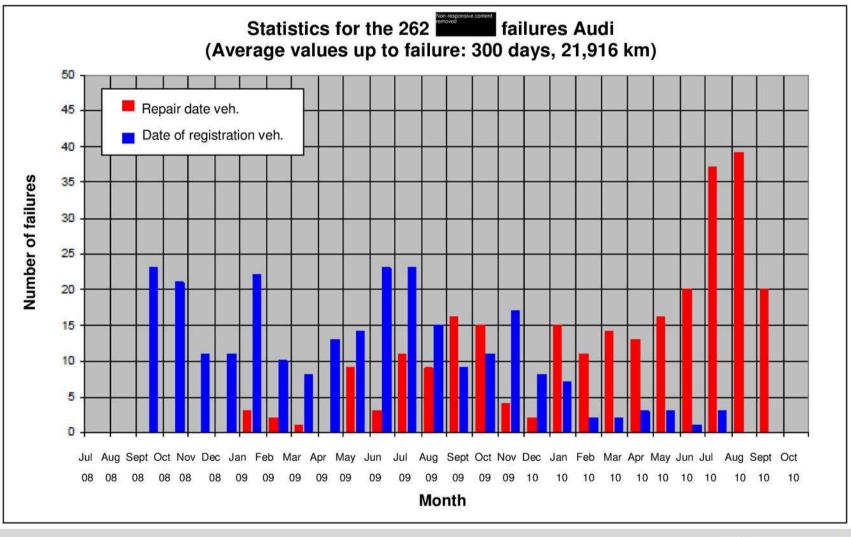
Month



CP4 Task Force Audi, failures in

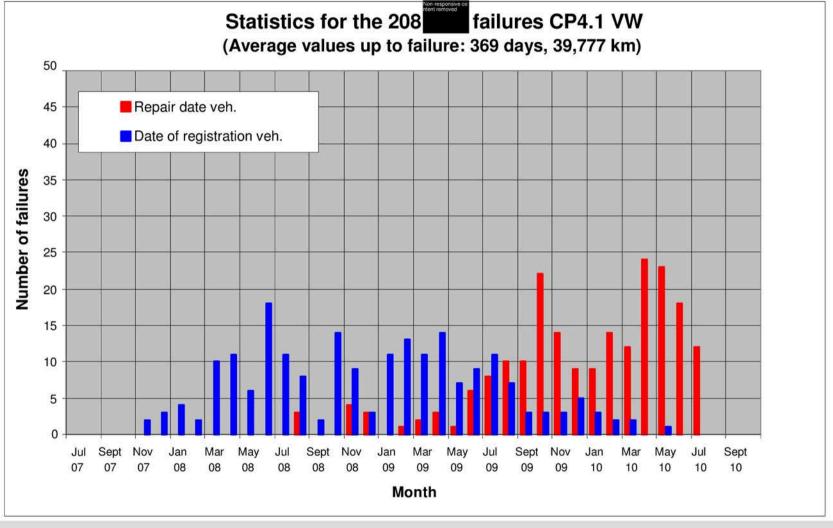


Audi CP4 Task Force, failures

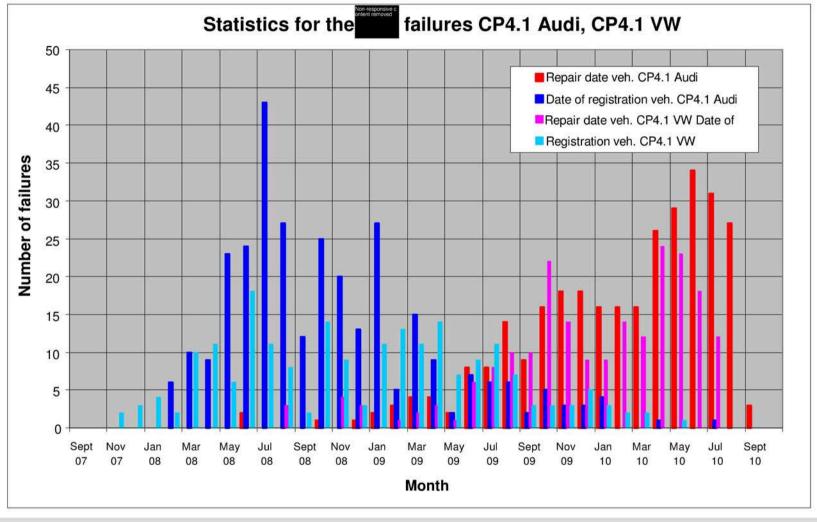


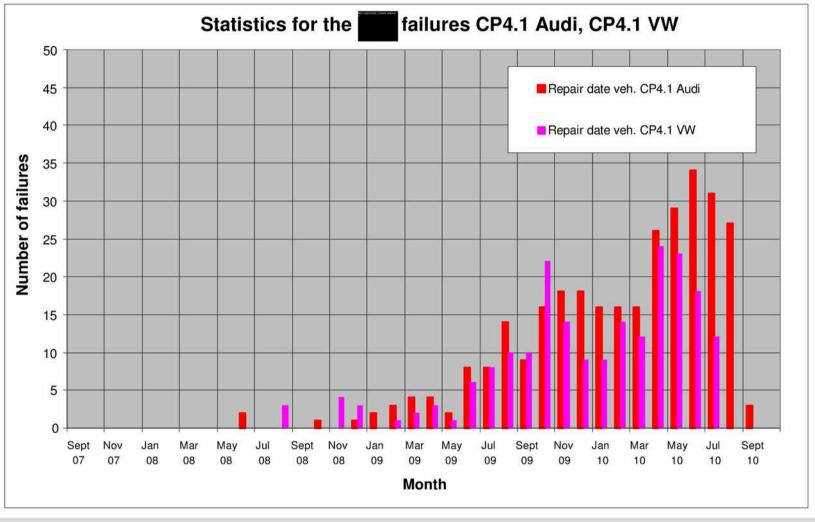
Audi CP4 Task Force, failures content removed

Audi CP4 Task Force, failures Non-responsive conte

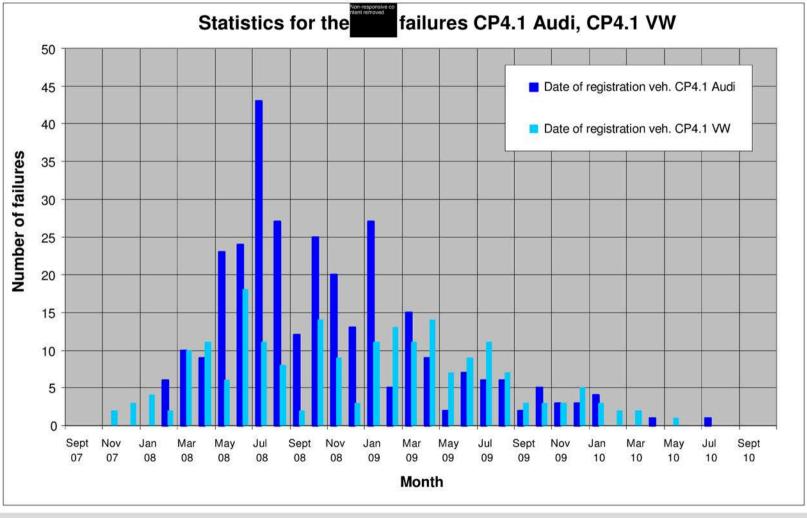


Audi CP4 Task Force, failures **CP4.1 Audi





Audi CP4 Task Force, failures CP4.1 Audi VW



Audi CP4 Task Force, failures CP4.1 Audi VM

Audi CP4 Task Force, failures CP4.1 Audi VM

TM: Audi overload tests

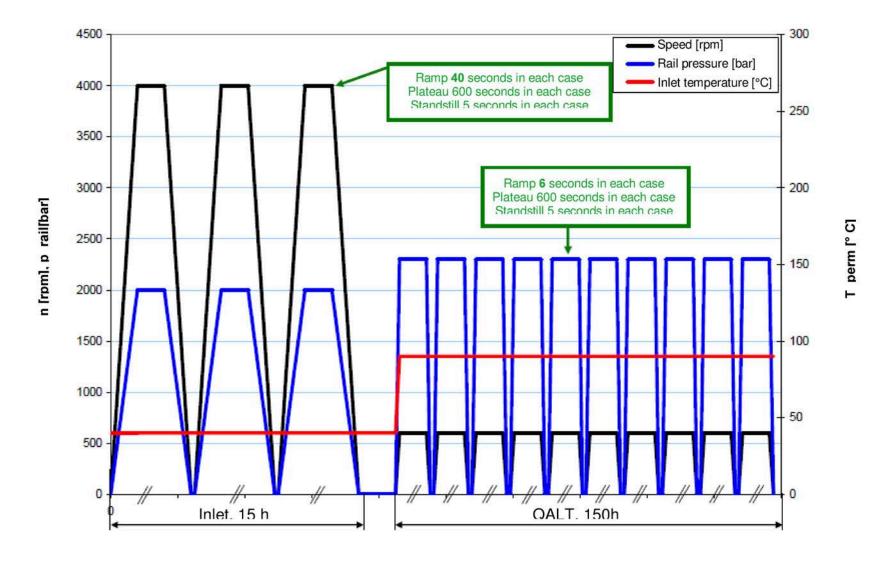
Status of verification of CP4.2 with series / RP1 / RP2

Pump test rig testing CP4.2

Pump type	Test type	ER start TAR GET	Fuel type	Actual run time	Target run time	0		25	50	75	100	125	150	175	200) 2	25	250
Series (C3)	QHALT	15/10	EU3	150	150	2	2,200 bar						*					
Series (C3)	QHALT	15/10	EU3	68	150		2,200 bar						* F	ailure du	e to dr	ivetr	ain d	damage
Series (C3)	QHALT	16/10	EU3	150	150		2,200 bar						* *F	Parts on	07.28.	2010) to E	BOSCH
Series (C3)	QHALT	18/10	EU3	150	150		2,200 bar						**					
RP1 (C2)	QHALT	19/10	EU3	150	150	1	2,300 bar						**					
RP1 (C2)	QHALT	20/10	EU3	150	150		2,300 bar						**					
													**	** Parts on 07.28.2010 to BOSCH				
RP2 (C2)	QHALT	29/10	EU3	150	150		2,300 bar	BPT4	325 on (07.23.10	complete	ed ***						
RP2 (C2)	QHALT	30/10	EU3	150	150		2,300 bar	BPT43	24 on 0	8.08.10	complete	d ***	In	let pressure	e reduced	from	6 bar	to 4.5 bar
RP2 (C2)	QHALT	31/10	EU3	150	150		2300 bar E	3PT43	22 on 08	3.22.10	completed	·** b	In	let pressure	e reduced	from	6 bar	to 4.5 bar
RP2 (C2)	QHALT	??/10	EU3	150	150	2300 bar BPT4388 on 09.02.10 completed *** *** Parts on 09						09.08.	2010	to E	OSCH			
Notes	:		,	,			Full pr	essu VII/15 I/h		.)	3.5 bar 600 144		0 bar 940 25.6	4.5 b 128 307	0	5.0 b 155 372	0	
A																		

CP4 Status pump test rig IAV, September 07, 2010

Warsprung durch Technik

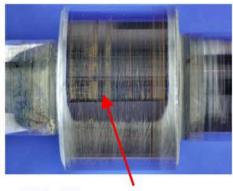


TM: Audi overload tests

Testing conditions

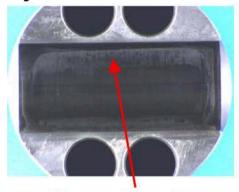
Overload test of drivetrain CP4 LR / RS-QOLD

- → Version 1: Mixed friction at low engine speed
 - Start-up program (15 h, 4,000 rpm, 2,000 bar, 40 °C, Arctic diesel Cl. 4.)
 - Endurance run program (150 h, 600 rpm, 2,300 bar, 90 °C, Arctic diesel Cl. 4.)

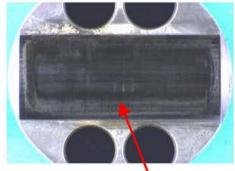

TM: Audi overload tests

2010-CP4_0576; Series; 0445010611; 05 100205 BPT

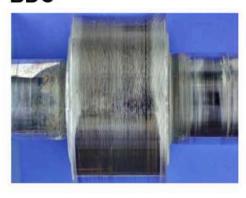
0604 AH; RT: 150h

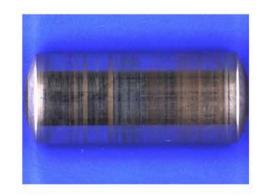

Series (C3)

TDC


Chatter marks

Cyl.1


Heavy deposits


Cyl.2

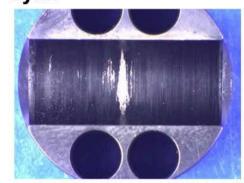
Heavy deposits

BDC

TM: Audi overload tests

2010-CP4_0577; Series; 0445010611; 05 100205 BPT

0607 AH; RT: 68 h


TDC

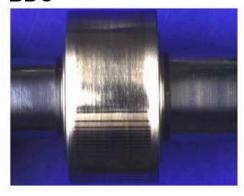
Cyl.1

Cyl.2

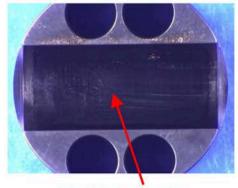
BDC

TM: Audi overload tests

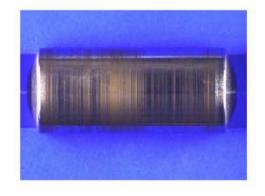
2010-CP4_0575; Series; 0445010611; 05 100205 BPT

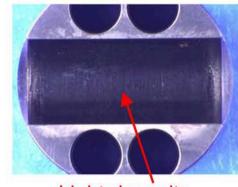

0608 AH; RT: 150h

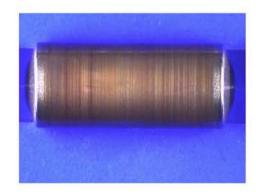
TDC



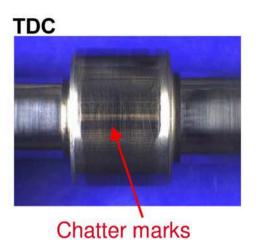
Chatter marks

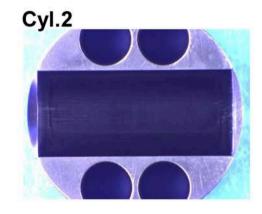

BDC

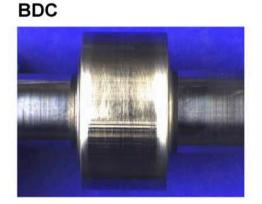

Cyl.1

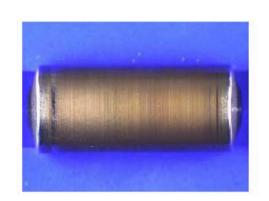

Light deposits

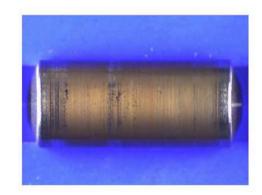
Cyl.2


Light deposits

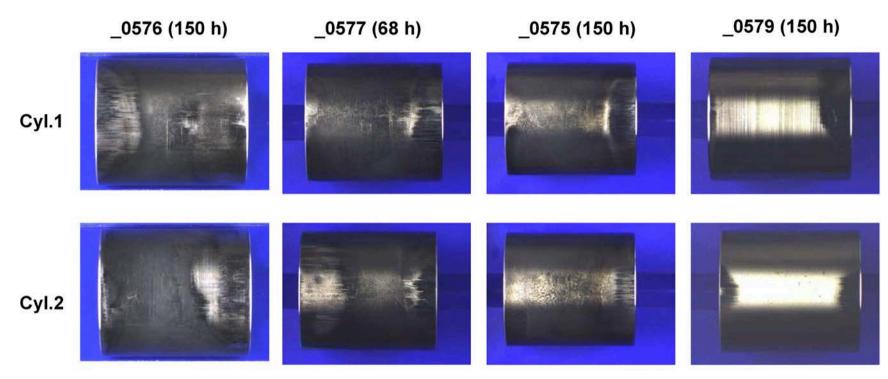

TM: Audi overload tests


2010-CP4_0579; Series; 0445010611; 05 100205 BPT


0603 AH; RT: 150h



Cyl.1

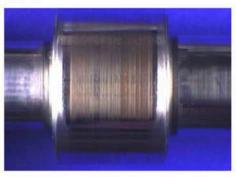


TM: Audi overload tests

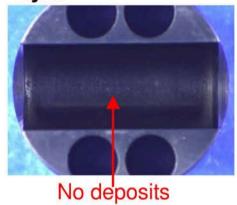
2010-CP4_0576; Series; 0445010611; 05 100205 BPT

0604 AH; RT: 150h

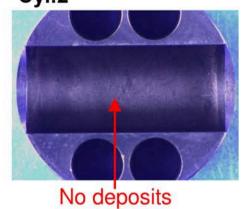
Heavy aluminum oxide formation (black) as an indicator of high temperatures

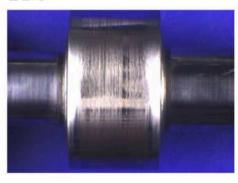

TM: Audi overload tests

2010-CP4_0578; Series; 0445010611; 05 100402 BPT


1142 BB; RT: 150h

RP1


TDC


Cyl.1

Cyl.2

BDC

TM: Audi overload tests

2010-CP4_0580; Series; 0445010611; 05 100402 BPT

1138 BB; RT: 150h

RP1

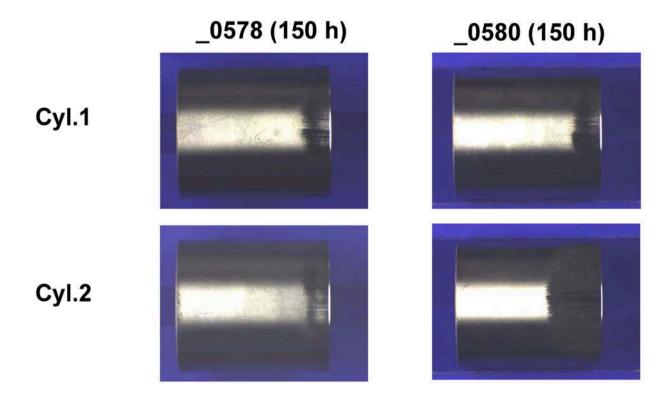
TDC

Cyl.1

Cyl.2

Thin deposits

BDC



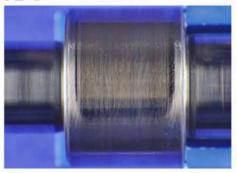
TM: Audi overload tests

2010-CP4_0576; Series; 0445010611; 05 100205 BPT

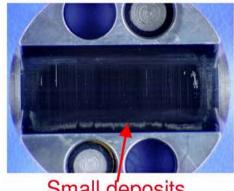
0604 AH; RT: 150h

RP1

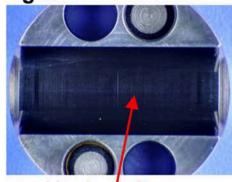
Aluminum oxide formation (black) as an indicator of elevated temperatures


TM: Audi overload tests

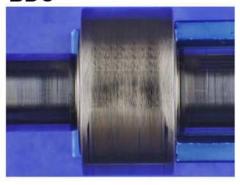
2010-CP4_0633; Series; 0445B20318; 007-4325 (W19

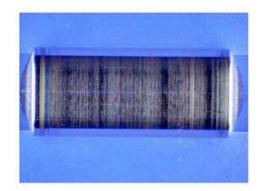

EU5) RT: 150h

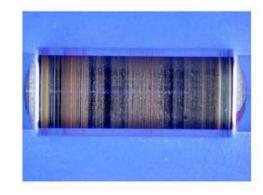
RP2


TDC

left

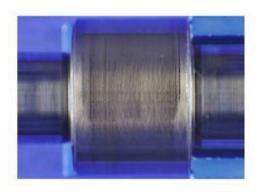



right

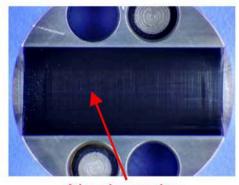

Small deposits

BDC

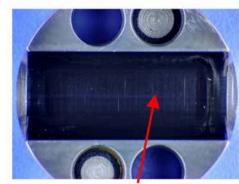
No deposits


TM: Audi overload tests

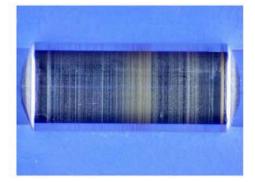
2010-CP4_0631; Series; 0445B20318; 007-4324 (W19

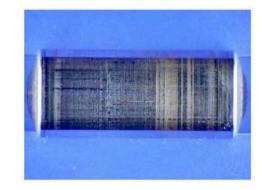

EU5) RT: 150h

RP2


TDC

left

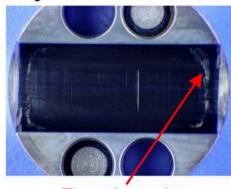

right


No deposits

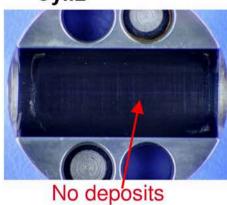
No deposits

TM: Audi overload tests

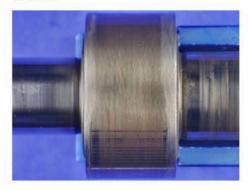
2010-CP4_0632; Series; 0445B20318; 007-4322 (W19

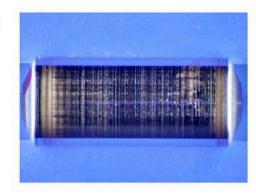

EU5) RT: 150h

RP2


TDC

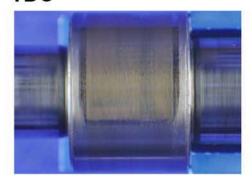
Cyl.1




Cyl.2

Few deposits

BDC

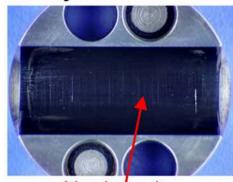

TM: Audi overload tests

2010-CP4_0630; Series; 0445B20318; 007-4388 (W19

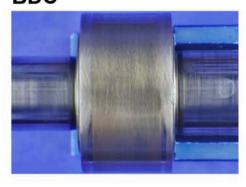
EU5) RT: 150h

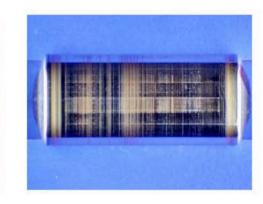
RP2

TDC



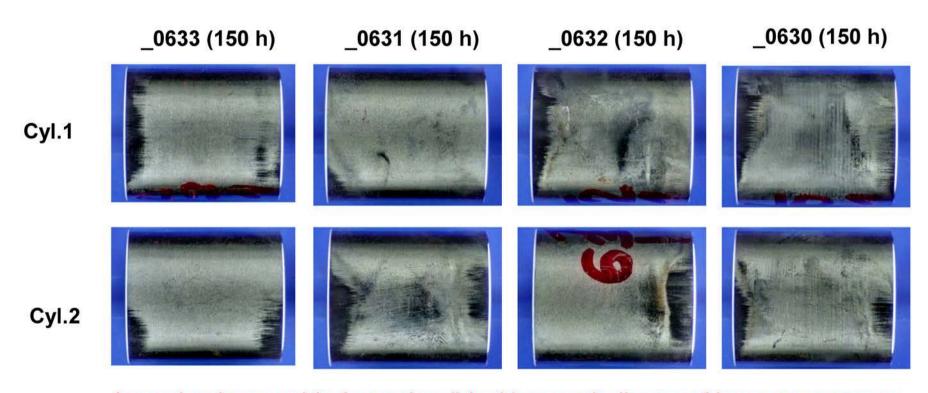
Cyl.1


No deposits


Cyl.2

No deposits

BDC

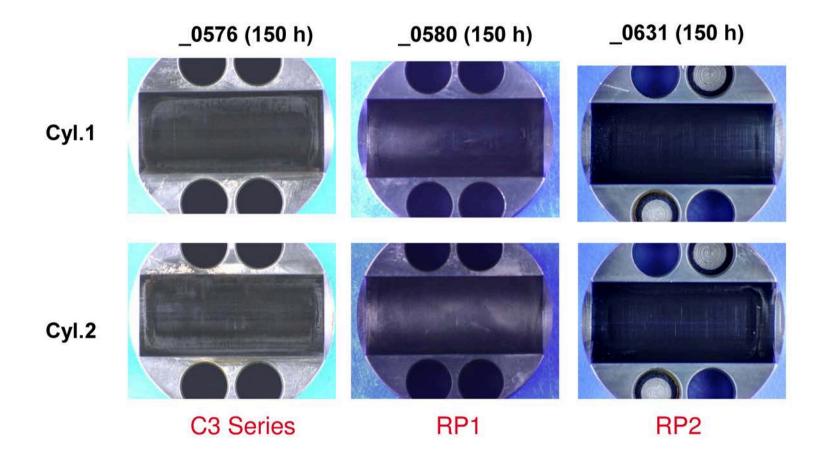

EA11003EN-02143[14] ENTIRE PACE CONFIDENTIAL

TM: Audi overload tests

2010-CP4_0576; Series; 0445010611; 05 100205 BPT

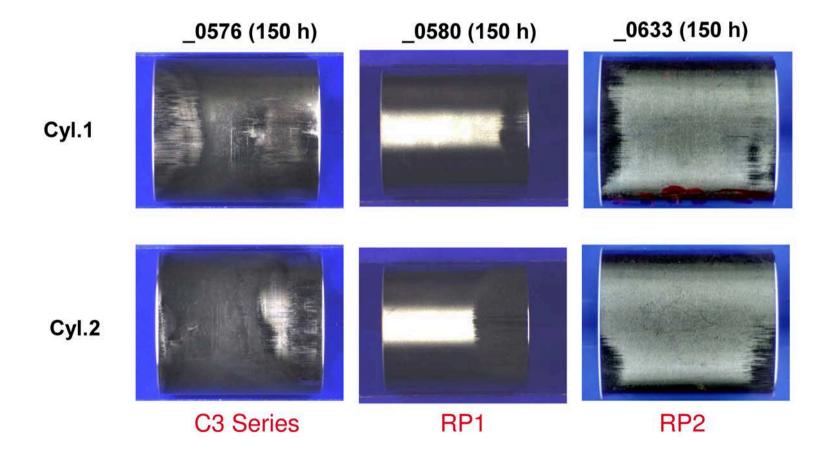
0604 AH; RT: 150h

RP2



Low aluminum oxide formation (black) as an indicator of low temperatures

TM: Audi overload tests


Summary of visual findings

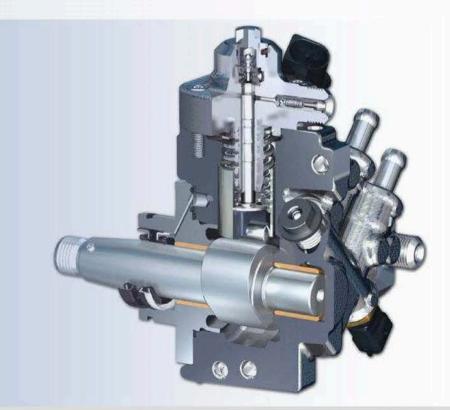
TM: Audi overload tests

Summary of visual findings

Task Force – Anti-wear packages @ CP4

Non-responsive content removed

- 1) Anti-wear package 1 (RP1)
- 2) Anti-wear package 2 (RP2)
- 3) Blasted camshaft


Non-responsive content removed

1) Anti-wear package 1 (RP1)

Non-responsive content removed

Task Force – Anti-wear packages @ CP4

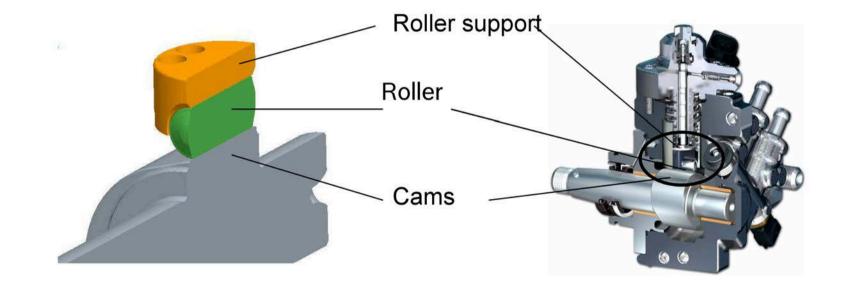
Anti-wear package 1

Task

Increasing the lubrication film between the roller support and the roller for fuels with lower viscosity (reduction of mixed friction fraction & temperatures)

Measures

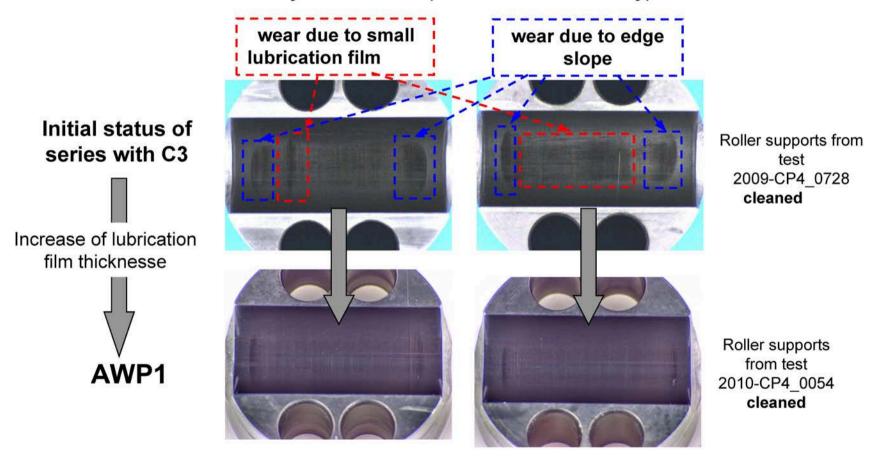
- Reduction in roughness in the roller support due to changeover to C2 coating
- Prevention of metal splashes (for process reasons there are no metal splashes with C2)
- Reduction of play between roller and roller support (smaller roller support bore)
- · Reduction in roughness of roller
- Optimization of edge slope on the roller (slackening)


Result

- AWP1 increases the lubrication film by the factor 2 (derived from findings)
- AWP1 has been in series at Audi for all CP4.2 since WK15

Task Force – Anti-wear packages @ CP4

Anti-wear package 1



Task Force – Anti-wear packages @ CP4

Anti-wear package AWP1

Verification of effectiveness by overload test (150 h with low viscosity)

Anti-wear package 2 (RP2)

Non-responsive content removed

Task Force – Anti-wear packages @ CP4

Anti-wear package 2

Task

Reduction of local temperature in the right roller support to the level of CP4.1

Measures

- Opt. arrangement of supply & return position (swapping of the supply / return connections)
- Introduction of a robust flange (large overflow cross-sections)

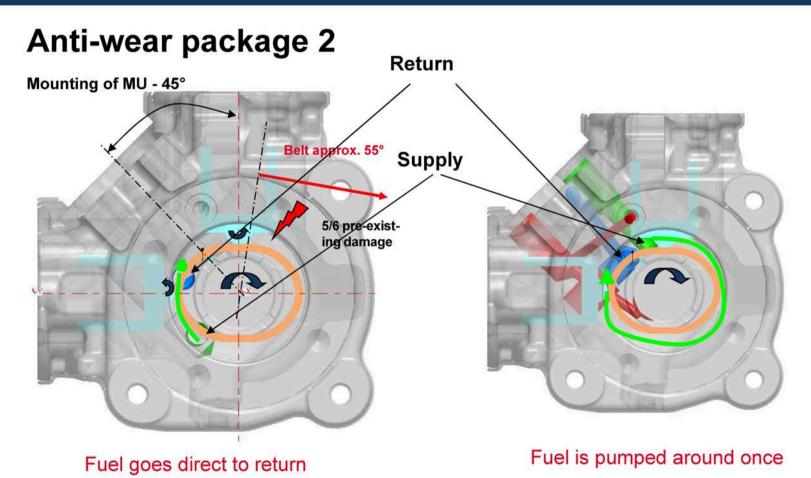
Result

Reduction of temperature in the lubrication gap by 24°C (from 136°C to 111°C @ 80l/h @ 70°C supply)

The level is thus the same as CP4.1

Qalt2 test endurance tests at R.B. passed

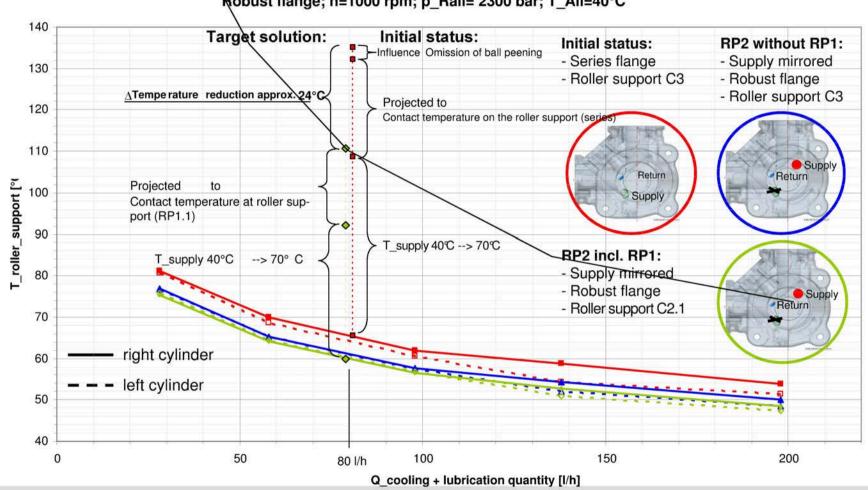
Pumps sent to Audi for testing


Non-responsive content removed

Series startup

starting WK34 possible

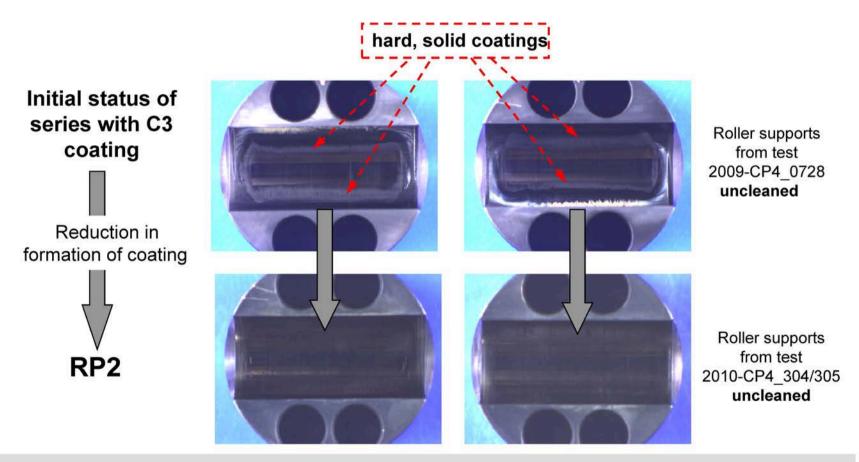
Task Force – Anti-wear packages @ CP4


CP4.2 electric fuel pump cw Audi W19

CP4.2 electric fuel pump cw RP2 for Audi W19

Task Force – Anti-wear packages @ CP4

CP4.2 Audi W19: roller support temperature as f (cooling and lubrication quantity)
Robust flange; n=1000 rpm; p Rail= 2300 bar; T All=40°C



Task Force – Anti-wear packages @ CP4

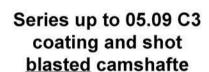
Anti-wear package RP2

Verification of effectiveness by overload test (150 h with low viscosity)



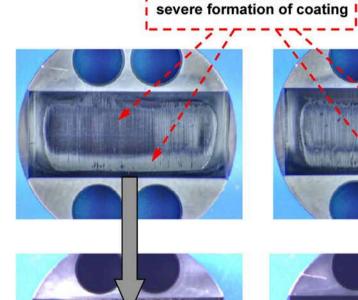
3) Blasted camshaft

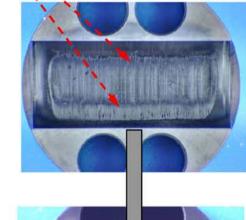
Non-responsive content removed



Task Force – Anti-wear packages @ CP4

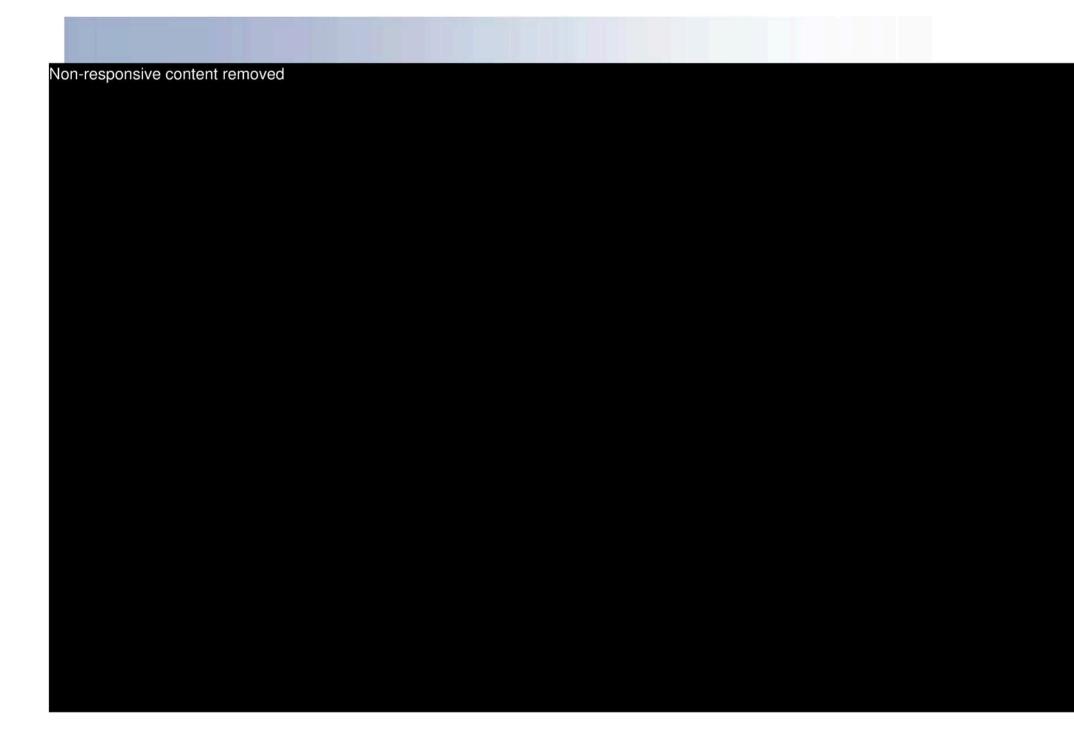
Ball peening of camshafte


Verification of effectiveness by overload test (150 h with low viscosity)



Reduction in formation of coating

Series after 09.06 C3 coating and unblasted cam shafte



Roller supports from test 2010-CP4_365/366 uncleaned

Roller supports from test 2009-CP4_0728 uncleaned

EA11003EN-02150[13]

ENTIRE PAGE CONFIDENTIAL

Task Force – Anti-wear packages @ CP4

Backup

Development activities - outlook

Non-responsive content removed

Diesel Systems

Task Force – Anti-wear packages @ CP4

Increase in robustness for Word Wide Usage (WWU)

1) Optimized C coating in the roller support (C3.1)

- Reduction in roughness peaks (Rp)
- Better adhesion through titanium coating
- Higher resistance to wear

2) Optimized supply geometry at the roller support

· Optimized shape of the roller support bore

3) Reduction of drivetrain temperature


- Efficient heat removal from the housing (increase in coolant quantity, optimized
- Flow through the housing -> new housing !)
- Increase in average drivetrain pressure (reduction of pressure peaks, raising of the overflow valve setting point)

4) Optimized cam surface

Non-responsive content removed

Diesel Systems

Task Force – Anti-wear packages @ CP4

Summary of findings 33 CP4.1 pumps from entremoved

Task

→ Findings overview & Statistics regarding 33 CP4.1 complaints from Audi vehicles in

Result

→ 25 of 33 pumps have drivetrain damage:

I Complete wear of 3 pumps

II Wear band 1 Pumpe

Material breakage Cams 8 pumps

IV Material breakage roller 9 pumps

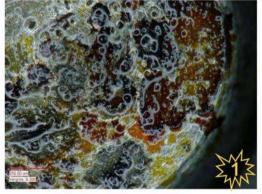
V Central "flattening" 4 pumps

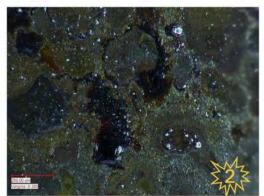
- → 22 of 25 cases of drivetrain damage have a final turned tappet
- → The frequency of coatings in the roller support on CP4.1 is less than on CP4.2
- → The frequency of signs of corrosion on CP4.1 is similar to that on CP4.2

Task Force – Anti-wear packages @ CP4

Examples of fuel aging at the intake valve (CP4.1 hon-responsive content

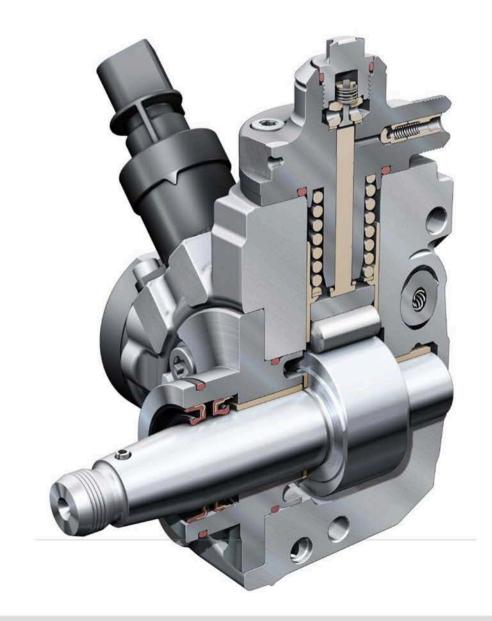
4VW372 DM Mar 08 35,010 km

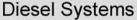





4VW354 DM Sept 09 5,358 km

with drivetrain damage


CP4.2 failures V6TDI VW/Audi, Status 09.30.2010


Failures

Damage hypothesis

Root cause analysis

Measures

EA11003EN-02175[1]

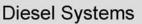
ENTIRE PAGE CONFIDENTIAL

CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

Failures

Audi Status as on 09.05.10:

worldwide 2,135 V6 TDI failures (MY 08 to MY 11, CP4.2).

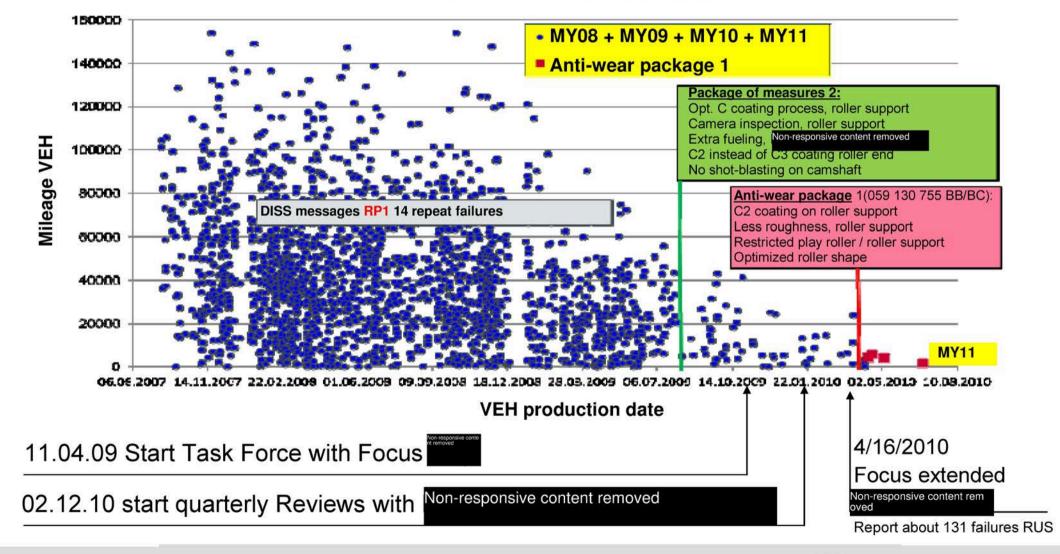

Failure rate greatly decreasing since vehicle DM 08/2009; since vehicle DM 06/2009 no failure V6TDI in Q7 and Touareg in Audi failures in the USA at the level of Non-responsive content rem

Sharp increase in Non-responsive cont ,284 failures.

VW (Audi Information from 09.29.10):

worldwide 1210 Touareg failures,

of which 750 Non-responsive content 235 Non-resp

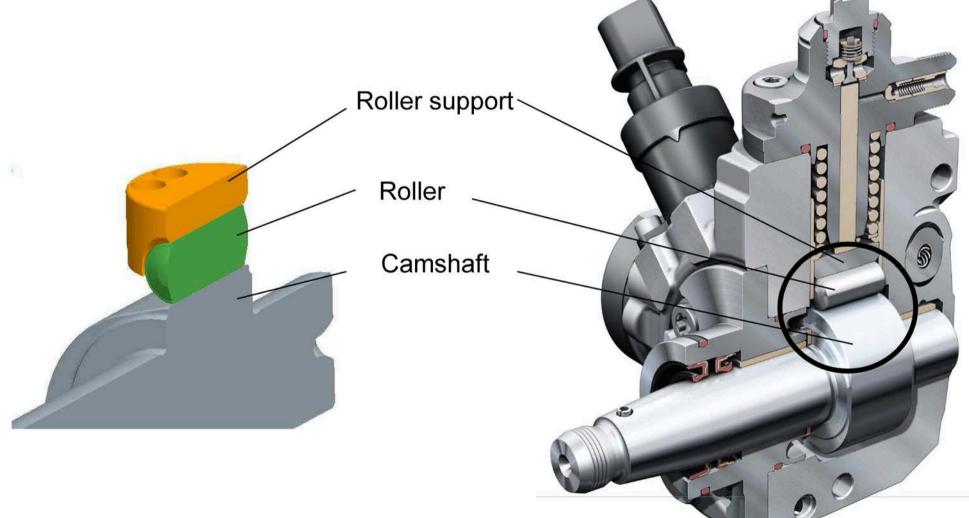


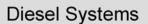
CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

Worldwide failures in the field involving high-pressure fuel pump CP4.2

Effectiveness of measures

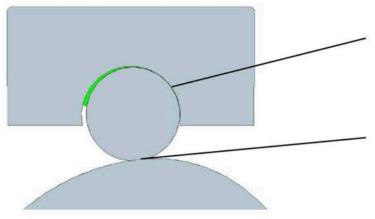
All Audi V6-TDI / SAGA 059A /B





CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

CP4 drivetrain



<u>ENTIRE PAGE CONFIDENTIAL</u>

CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

CP4 drivetrain function

Coefficient of friction of roller-roller support

Coefficient of friction of roller-cam

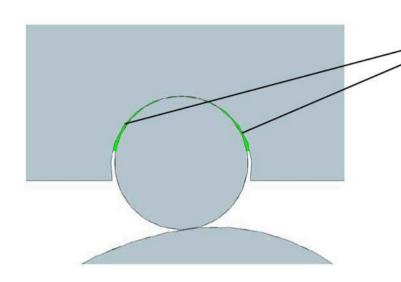
Roll function of the roller on the cam is met when the friction coefficient roller / cam is higher than the friction coefficient roller / roller support.

Condition: µ_roller-cam > µ_roller-roller support

Typical values: µ_roller-cam: 0.11

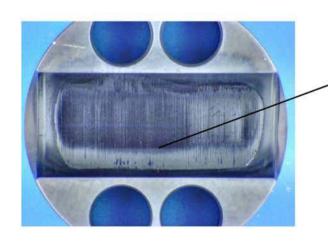
μ roller-roller support: 0.035

It can be concluded:

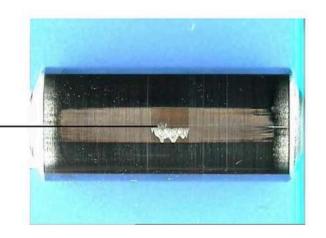

- Roller support surface is very smooth at each condition
- Camshaft is rough at each condition

Diesel Systems

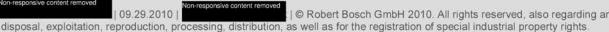
CP4.2 failures V6TDI VW/Audi, Status 09.30.2010


Immobilizer by deposits

Deposit in the roller support prevents starting of running of the roller.


Subsequent pump failure due to

- Turned tapper
- Abrasive wear
- Roller fatigue
 (For very wide flat spots)



Deposit in the roller support

Flat spots on roller

Diesel Systems

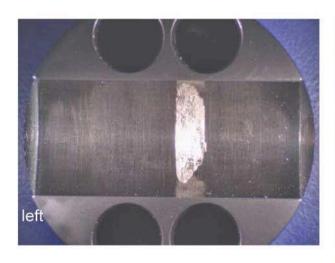
CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

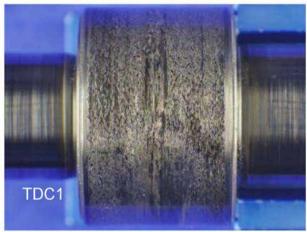
Emergence of braking flats

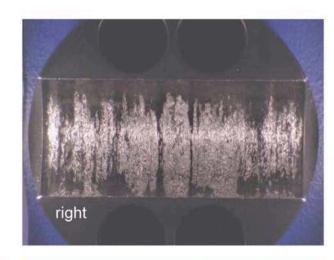
Deposits in the roller support prevent the rocking of the roller in the roller support -> no buildup of hydrodynamics -> stationary / stiff roller -> Roller slides on the cam -> preliminary damage (braking flat on the roller).

Deposits are formed through deposition of biofuels / additives at temperatures > 140°C.

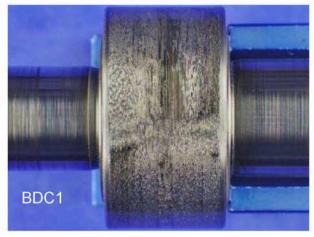
Fuel with low viscosity and low boiling temperature leads with high temperatures in the roller support (~ 200°C) to evaporation of the fuel in the gap -> no build-up of hydrodynamics -> standing/stiff roller -> roller slides on cam -> preliminary damage (braking flat on the roller).

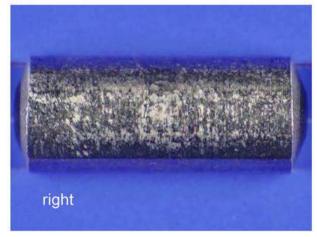

Low viscosity and low-boiling fuels with high proportion of additives (e.g. kerosene) combine both types.

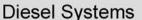



CP4.2 failures V6TDI VW/Audi, Status 09.30.2010

2010-CP4_0644


Failed pump field RT not known 0 445 010 611; DM: 100121 BPT 1190; C-Index 05; 059 130 755 AH





CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

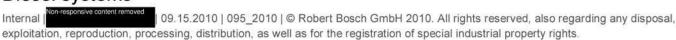
Breakdown Touareg NF USA (90,000km)

Roller cyl. 1

Roller cyl. 1

US Tailing WS
(Fr. 1800) roles

Block CS4.2
(25 1375524)
(60 - 1014) BFT 2000
(2016) J


Camshaft

Roller cyl. 2

Roller cyl. 2

Roller fatigue

Diesel systems

CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Analysis results

39 Good pumps

Deposition products (aged biofuel / additives / water) disallow the start-up of the roller on start. This leads to preliminary damage (braking flat) and later failure through turned tappet.

12 good pumps, partial deposits

Abrasive wear of roller and cam caused by poor quality fuel (low viscosity, low vapor pressure, kerosene, water).

13 good pumps, partial deposits

Good pumps from veh. plant show in 3 of 5 cases preliminary damage (braking flats) after 20 km run-in.

CP4.2:

Increase in temperature of roller cyl. 2 by 20-25°C compared with cyl. 1 due to poorer interior flushing

EA 11003EN-02175[10] ENTIRE PAGE CONFIDENTIAL

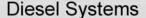
CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Measures

1. Optimization of production processes:

SOP 05.2008 package of measures 1

SOP 06.2009 package of measures 2


Quality of previous pump has been achieved with regard to fuels according to specification

2. Increase of robustness against fuels ex spec.:

SOP WK15.2010 anti-wear package 1 (RP1) Impact on CP4.1 and CP4.2

SOP WK45.2010 anti-wear package 2 (RP2)
Impact on CP4.2: no critical temperature rise at roller support 2

CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Anti-wear package 1 (RP1), SOP WK10.2010

Task

Increasing the lubrication film between the roller support and the roller for fuels with lower viscosity (reduction of mixed friction fraction and temperatures)

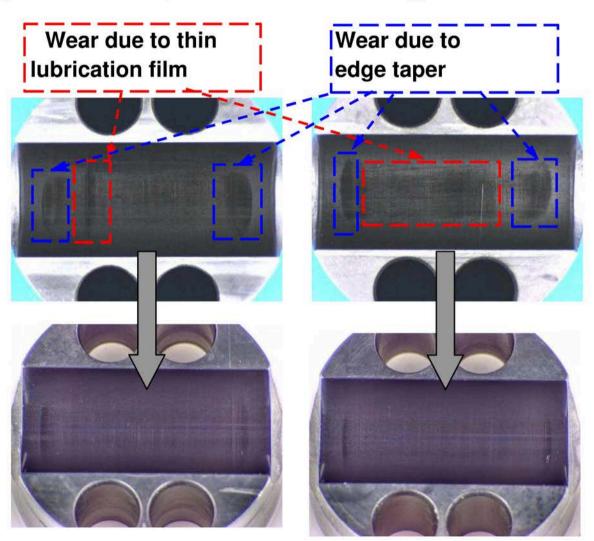
Measures

- Changeover of C3 coating (sputtering) of the roller support on C2.1 coating (plasma):
- Reduction of roughness Rv from 1.3um to 0.8um
- Avoidance of fusing and metal spatter (process-related)
- Reduction of play between roller and roller support (smaller roller support hole)
- Reducing the roughness of the roller
- Optimization of edge taper on the roller (slender taper)

Result

RP1 raises the lubricant film by a factor of 2 (derived from diagnosis results). Effectiveness proven via RB test rig stress test.

CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010


Anti-wear package RP1

Proof of effectiveness by overload test (150 h with low viscosity)

Initial status of series with C3

Increasing lubricant film thickness

Roller supports from test 2009-CP4_0728 cleaned

Roller supports from test 2010-CP4_0054 cleaned

EA11003EN-02175[13]

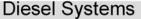
ENTIRE PAGE CONFIDENTIAL

CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Anti-wear package 2 (RP2), SOP WK 45.2010

Task

Reduction of the local temperature in the right roller support of CP4.2 at the level of CP4.1

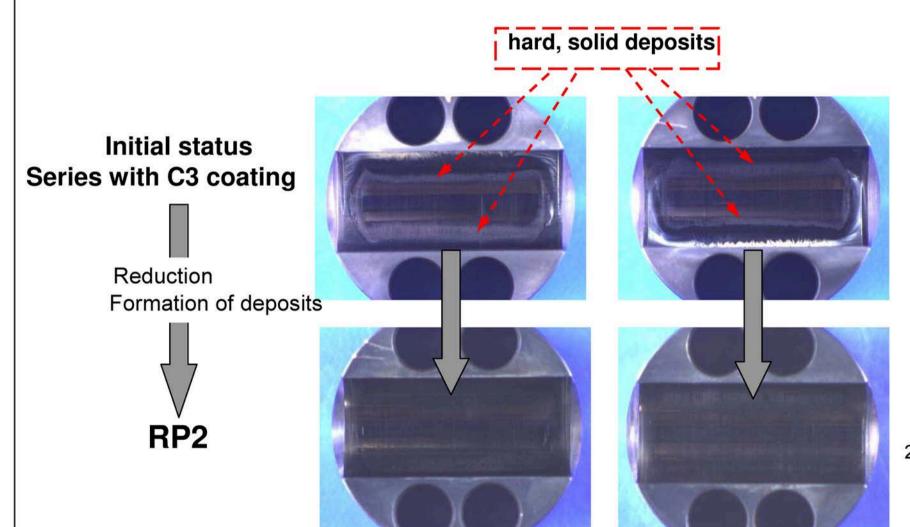

Measures

Opt. Arrangement of inflow and return position (replacement of inflow / return connections), introduction of a robust flange (increase of overflow cross-section)

Result

Temperature reduction in the lubrication gap by 24 °C (from 136°C to 111°C @ 80I/h @ 70°C supply). The level is thus the same as CP4.1 Significant increase in the lubrication gap and prevention of deposit formation. Effectiveness proven via RB / IAV test rig stress test.

80 pumps delivered to Audi for testing and use/replacement in failed vehicles in 20 additional pumps on 10/01/10 First two vehicle results positive.



CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Anti-wear package RP2

Proof of effectiveness by overload test (150 h with low viscosity)

Roller supports from test 2009-CP4_0728 uncleaned

Roller supports from test 2010-CP4_304/305 uncleaned

CP4.2 failures V6TDI VW/Audi, Status as on 09.30.2010

Further measures

- 1. Exclusion of further design-related influences in comparison with CP4.2 at third-party OEM (finish direction of the camshaft different from rotation direction) RB T.: E10.10
- 2. Exclusion of preliminary damages in delivery chain:

Pumps from the complete delivery chain oved (pump / engine / vehicle), are disassembled and analyzed for preliminary damages. Action plan agreed with Audi on 09.29.10. Date: E10.10

On-site analysis in on-responsive content by joint Audi / RB team Date: E10.10

- 3. Exclusion of poor lubrication of the pump due to insufficient presupply quantity from the low pressure circuit in connection with poor quality fuels. Audi/ RB T.: E10.10
- 4. Endurance runs with jointly defined RoW fuel RB E12.2010 as basis for worldwide approval first results

From: Non-responsive content removed

To: CC:

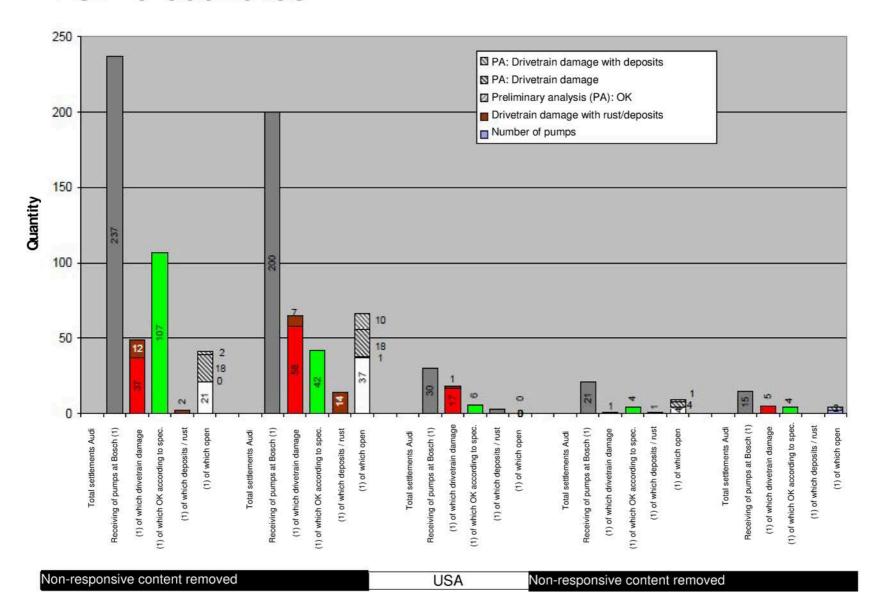

Date: 11.02.2010 07:10:57 PM Subject: List of TOP5 countries

Attachments: TOP 5 Länder-2010-08-02-CP4.1.pdf

Hello Roman responsive content

As discussed today, the list of TOP5 countries of CP4.1 as of 08.02.2010. The updating additionally still includes the error "Non-starter".

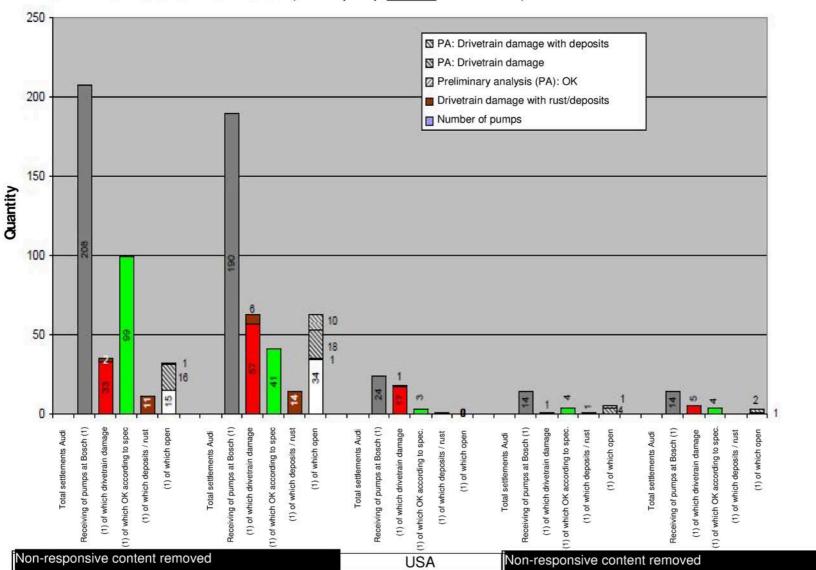
Best regards



Domicile: Stuttgart, Court of Registry: Local District Court Stuttgart, Commercial Register No. 14000; Chairman of the Supervisory Board: Hermann Scholl; Management: Franz Fehrenbach, Siegfried Dais; Bernd Bohr, Rudolf Colm, Volkmar Denner, Wolfgang Malchow, Peter Marks, Peter Tyroller; Stefan Asenkerschbaumer, Uwe Raschke, Wolf-Henning Scheider

EA11 VVV / AUGI CP4.1 FIELD PAGE CONFIDENTIAL

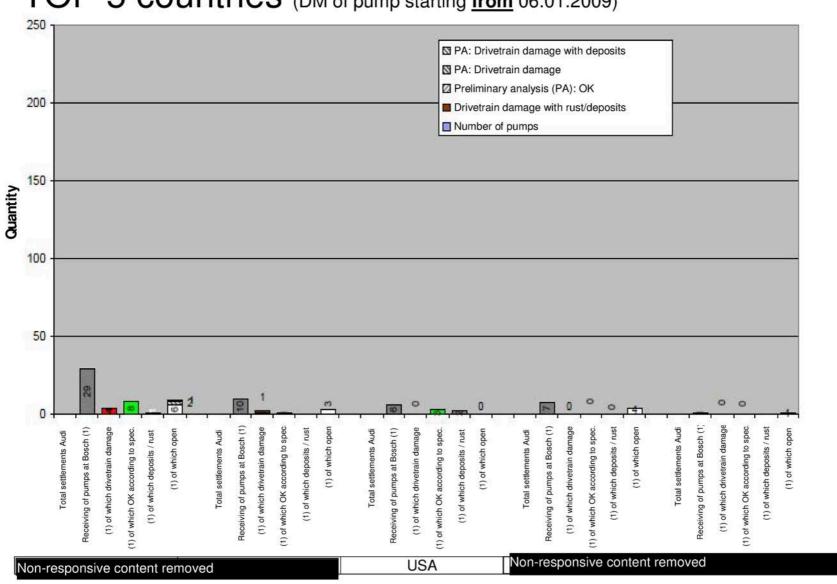
TOP 5 countries


Diesel Systems

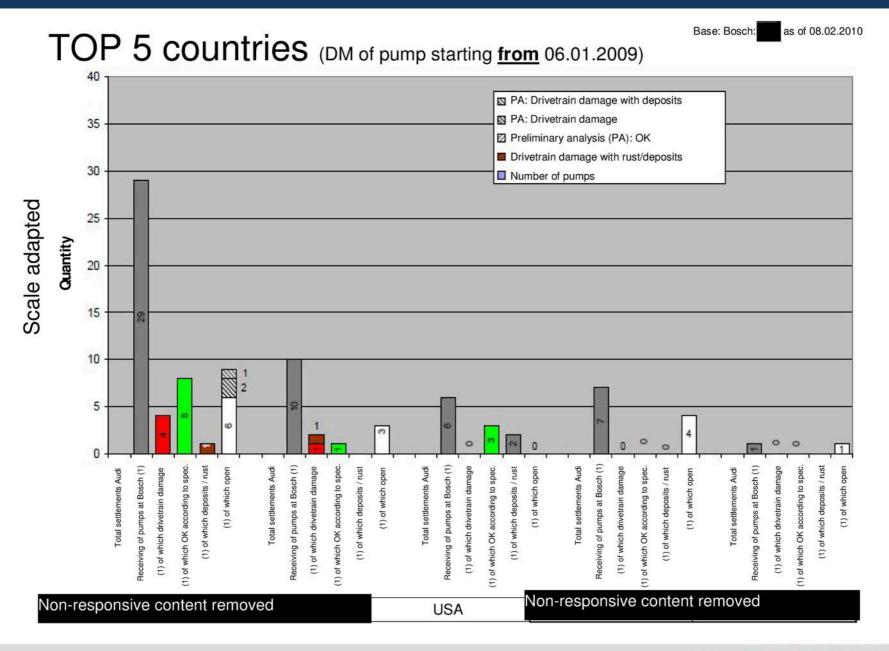
EA11 VVV AUGI CP4.1 FIELD PAGE CONFIDENTIAL

Base: Bosch: as of 08.02.2010

TOP 5 countries (DM of pump before 06.01.2009)



EA11 VVV/AUGI CP4.1 FIEIT REPAGE CONFIDENTIAL



EATI WWW/AUGITCP4.1 FIELD REPAGE CONFIDENTIAL

